×

A mathematical model of the use of supplemental oxygen to combat surgical site infection. (English) Zbl 1411.92138

Summary: Infections are a common complication of any surgery, often requiring a recovery period in hospital. Supplemental oxygen therapy administered during and immediately after surgery is thought to enhance the immune response to bacterial contamination. However, aerobic bacteria thrive in oxygen-rich environments, and so it is unclear whether oxygen has a net positive effect on recovery. Here, we develop a mathematical model of post-surgery infection to investigate the efficacy of supplemental oxygen therapy on surgical-site infections.
A 4-species, coupled, set of nonlinear partial differential equations that describes the space-time dependence of neutrophils, bacteria, chemoattractant and oxygen is developed and analysed to determine its underlying properties. Through numerical solutions, we quantify the efficacy of different supplemental oxygen regimes on the treatment of surgical site infections in wounds of different initial bacterial load. A sensitivity analysis is performed to investigate the robustness of the predictions to changes in the model parameters. The numerical results are in good agreement with analyses of the associated well-mixed model. Our model findings provide insight into how the nature of the contaminant and its initial density influence bacterial infection dynamics in the surgical wound.

MSC:

92C50 Medical applications (general)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Allen, D.; Maguire, J.; Mani, M.; Wicke, C.; Marcocci, L.; Scheuenstuhl, H.; Chang, M.; Le, A.; Hopf, H. W.; Hunt, T. K., Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms, Arch. Surg., 132, 9, 991 (1997)
[2] Alt, W.; Lauffenburger, D., Transient behavior of a chemotaxis system modelling certain types of tissue inflammation, J. Math. Biol., 24, 6, 691-722 (1987) · Zbl 0609.92020
[3] Astagneau, P.; Rioux, C.; Golliot, F.; Brucker, G., Morbidity and mortality associated with surgical site infections: results from the 1997-1999 inciso surveillance, J. Hosp. Infect., 48, 4, 267-274 (2001)
[4] Belda, F.; Aguilera, L.; de la Asunción, J.; Alberti, J.; Vicente, R.; Ferrándiz, L.; Rodríguez, R.; Sessler, D.; Aguilar, G.; Botello, S., Supplemental perioperative oxygen and the risk of surgical wound infection, JAMA J. Am. Med. Assoc., 294, 16, 2035-2042 (2005)
[5] Cheretakis, C.; Leung, R.; Sun, C.; Dror, Y.; Glogauer, M., Timing of neutrophil tissue repopulation predicts restoration of innate immune protection in a murine bone marrow transplantation model, Blood, 108, 8, 2821-2826 (2006)
[6] Chung-Sheng, S.; Guey-Yueh, S.; Shi-Ming, H.; Yuan-Chung, K.; Kuan-Lin, K.; Chih-Yuan, M.; Cheng-Hsiang, K.; Bi-Ing, C.; Chuan-Fa, C.; Chun-Hung, L., Lectin-like domain of thrombomodulin binds to its specific ligand lewis y antigen and neutralizes lipopolysaccharide-induced inflammatory response, Blood, 112, 9, 3661-3670 (2008)
[7] Coello, R.; Charlett, A.; Wilson, J.; Ward, V.; Pearson, A.; Borriello, P., Adverse impact of surgical site infections in english hospitals, J. Hosp. Infect., 60, 2, 93-103 (2005)
[8] Davis, K. M.; Mohammadi, S.; Isberg, R. R., Community behavior and spatial regulation within a bacterial microcolony in deep tissue sites serves to protect against host attack, Cell Host Microbe, 17, 1, 21-31 (2015)
[9] Day, J.; Rubin, J.; Vodovotz, Y.; Chow, C.; Reynolds, A.; Clermont, G., A reduced mathematical model of the acute inflammatory response ii. capturing scenarios of repeated endotoxin administration, J. Theor. Biol., 242, 1, 237-256 (2006) · Zbl 1441.92011
[10] Dronne, M.; Boissel, J.; Grenier, E.; Gilquin, H.; Cucherat, M.; Hommel, M.; Barbier, E.; Bricca, G., Mathematical modelling of an ischemic stroke: an integrative approach, Acta Biotheor., 52, 4, 255-272 (2004)
[11] Ebrahimzadeh, P.; Högfors, C.; Braide, M., Neutrophil chemotaxis in moving gradients of fmlp, J. Leukoc. Biol., 67, 5, 651-661 (2000)
[12] Enoch, S.; Grey, J.; Harding, K., Recent advances and emerging treatments, BMJ, 332, 962—965 (2006)
[13] Flegg, J.; Byrne, H.; Flegg, M.; McElwain, D., Wound healing angiogenesis: the clinical implications of a simple mathematical model, J. Theor. Biol., 300, 309-316 (2012) · Zbl 1397.92324
[14] Flegg, J.; Byrne, H.; McElwain, D., Mathematical model of hyperbaric oxygen therapy applied to chronic diabetic wounds, Bull. Math. Biol., 72, 7, 1867-1891 (2010) · Zbl 1202.92039
[15] Flegg, J.; McElwain, D.; Byrne, H.; Turner, I., A three species model to simulate application of hyperbaric oxygen therapy to chronic wounds, PLoS Comput. Biol., 5, 7, e1000451 (2009)
[16] Gardella, C.; Goltra, L.; Laschansky, E.; Drolette, L.; Magaret, A.; Chadwick, H.; Eschenbach, D., High-concentration supplemental perioperative oxygen to reduce the incidence of postcesarean surgical site infection: a randomized controlled trial, Obstet. Gynecol., 112, 3, 545-552 (2008)
[17] Gelape, C., Surgical wound infection following heart surgery, Arq. Bras. Cardiol., 89, 1, e3-e9 (2007)
[18] Gottrup, F.; Firmin, R.; Rabkin, J.; Halliday, B.; Hunt, T., Directly measured tissue oxygen tension and arterial oxygen tension assess tissue perfusion, Crit. Care Med., 15, 11, 1030-1036 (1987)
[19] Greif, R.; Akça, O.; Horn, E.; Kurz, A.; Sessler, D., Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection, N. Engl. J. Med., 342, 3, 161-167 (2000)
[20] Hawn, M.; Richman, J. S.; Vick, C. C.; Deierhoi, R. J.; Graham, L. A.; Henderson, W. G.; Itani, K. M.F., Timing of surgical antibiotic prophylaxis and the risk of surgical site infection, JAMA Surg., 148, 7, 649-657 (2013)
[21] Health Protection Agency (HPA), 2012. Accessed 20th June 2013.Surveillance of surgical site infections in NHS hospitals in England 2011/12. Available from: http://www.hpa.org.uk; Health Protection Agency (HPA), 2012. Accessed 20th June 2013.Surveillance of surgical site infections in NHS hospitals in England 2011/12. Available from: http://www.hpa.org.uk
[22] Hohn, D.; MacKay, R.; Halliday, B.; Hunt, T., Effect of o2 tension on microbicidal function of leukocytes in wounds and in vitro, Surgical forum, 27, 18 (1976)
[23] Humphreys, H.; Becker, K.; Dohmen, P.; Petrosillo, N.; Spencer, M.; van Rijen, M.; Wechsler-Fordos, A.; Pujol, M.; Dubouix, A.; Garau, J., Staphylococcus aureus and surgical site infections: benefits of screening and decolonization before surgery, J. Hosp. Infect., 94, 295-304 (2016)
[24] Hunt, T.; Hopf, H., Wound healing and wound infection: what surgeons and anesthesiologists can do, Surg. Clin. N. Am., 77, 3, 587-606 (1997)
[25] Iocono, J.; Colleran, K.; Remick, D.; Gillespie, B.; Ehrlich, H.; Garner, W., Interleukin-8 levels and activity in delayed-healing human thermal wounds, Wound Repair Regen., 8, 3, 216-225 (2000)
[26] Jeon, N.; Baskaran, H.; Dertinger, S.; Whitesides, G.; Van De Water, L.; Toner, M., Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device, Nat. Biotechnol., 20, 8, 826-830 (2002)
[27] Kim, J.; Pitts, B.; Stewart, P.; Camper, A.; Yoon, J., Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm, Antimicrob. Agents Chemother., 52, 4, 1446-1453 (2008)
[28] Kohanski, M.; Dwyer, D.; Hayete, B.; Lawrence, C.; Collins, J., A common mechanism of cellular death induced by bactericidal antibiotics, Cell, 130, 797-810 (2007)
[29] Laterveer, L.; Lindley, I.; Heemskerk, D.; Camps, J.; Pauwels, E.; Willemze, R.; Fibbe, W., Rapid mobilization of hematopoietic progenitor cells in rhesus monkeys by a single intravenous injection of interleukin-8, Blood, 87, 2, 781-788 (1996)
[30] Lauffenburger, D., Measurement of phenomenological parameters for leukocytemotility and chemotaxis, Agents Actions Suppl., 12, 34-53 (1983)
[31] Lauffenburger, D.; Kennedy, C., Analysis of a lumped model for tissue inflammation dynamics, Math. Biosci., 53, 189-221 (1981) · Zbl 0489.92008
[32] Lauffenburger, D.; Kennedy, C., Localized bacterial infection in a distributed model for tissue inflammation, J. Math. Biol., 16, 2, 141-163 (1983) · Zbl 0537.92007
[33] Maggelakis, S., A mathematical model of tissue replacement during epidermal wound healing, Appl. Math. Model., 27, 3, 189-196 (2003) · Zbl 1022.92016
[34] MathWorks, 15 November 2017. PDEPE Manual. https://au.mathworks.com/help/matlab/ref/pdepe.html; MathWorks, 15 November 2017. PDEPE Manual. https://au.mathworks.com/help/matlab/ref/pdepe.html
[35] Mayzler, O.; Weksler, N.; Domchik, S.; Klein, M.; Mizrahi, S.; Gurman, G., Does supplemental perioperative oxygen administration reduce the incidence of wound infection in elective colorectal surgery, Minerva Anestesiol., 71, 1-2, 21-25 (2005)
[36] Mi, Q.; Rivière, B.; Clermont, G.; Steed, D.; Vodovotz, Y., Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-\(β1\), Wound Repair Regen., 15, 5, 671-682 (2007)
[37] Min-Ho, K.; Wei, L.; Borjesson, D.; Curry, F.; Miller, L.; Cheung, A.; Fu-Tong, L.; Isseroff, R.; Simon, S., Dynamics of neutrophil infiltration during cutaneous wound healing and infection using fluorescence imaging, J. Invest. Dermatol., 128, 7, 1812-1820 (2008)
[38] Moghe, P.; Nelson, R.; Tranquillo, R., Cytokine-stimulated chemotaxis of human neutrophils in a 3-d conjoined fibrin gel assay, J. Immunol. Methods, 180, 2, 193-211 (1995)
[39] M. T., S.; D., L., The antibacterial activity of vancomycin towards staphylococcus aureus under aerobic and anaerobic conditions, J. Appl. Microbiol., 92, 866-872 (2002)
[40] Myles, P. S.; Kurz, A., Supplemental oxygen and surgical site infection: getting to the truth, BJA: Br. J. Anaesth., 119, 1, 13-15 (2017)
[41] Pettet, G.; Byrne, H.; McElwain, D.; Norbury, J., A model of wound-healing angiogenesis in soft tissue, Math. Biosci., 136, 1, 35-63 (1996) · Zbl 0860.92020
[42] Qadan, M.; Akca, O.; Mahid, S.; Hornung, C.; Polk Jr, H., Perioperative supplemental oxygen therapy and surgical site infection: a meta-analysis of randomized controlled trials, Arch. Surg., 144, 4, 359 (2009)
[43] Reynolds, A.; Rubin, J.; Clermont, G.; Day, J.; Vodovotz, Y.; Bard Ermentrout, G., A reduced mathematical model of the acute inflammatory response: i. derivation of model and analysis of anti-inflammation, J. Theor. Biol., 242, 1, 220-236 (2006) · Zbl 1441.92013
[44] Romanyukha, A.; Rudnev, S.; Sidorov, I., Energy cost of infection burden: an approach to understanding the dynamics of host-pathogen interactions, J. Theor. Biol., 241, 1, 1-13 (2006) · Zbl 1447.92106
[45] Rudnev, S.; Romanyukha, A., Mathematical modeling of immune-inflammatory reaction in acute pneumonia, J. Biol. Syst., 3, 02, 429-439 (1995)
[46] Sasaki, N.; Horinouchi, H.; Ushiyama, A.; Minamitani, H., A new method for measuring the oxygen diffusion constant and oxygen consumption rate of arteriolar walls, Keio J Med, 61, 2, 57-65 (2012)
[47] Schugart, R.; Friedman, A.; Zhao, R.; Sen, C., Wound angiogenesis as a function of tissue oxygen tension: a mathematical model, Proc. Nat. Acad. Sci., 105, 7, 2628-2633 (2008)
[48] Shen, L.; Smith, J. M.; Shen, Z.; Hussey, S. B.; Wira, C. R.; Fanger, M. W., Differential regulation of neutrophil chemotaxis to il-8 and fmlp by gm-csf: lack of direct effect of oestradiol, Immunology, 117, 2, 205-212 (2006)
[49] Sherratt, J.; Chaplain, M., A new mathematical model for avascular tumour growth, J. Math. Biol., 43, 2, 291-312 (2001) · Zbl 0990.92021
[50] Singer, M.; Sansonetti, P. J., Il-8 is a key chemokine regulating neutrophil recruitment in a new mouse model of shigella-induced colitis, J. Immunol., 173, 6, 4197-4206 (2004)
[51] Smith, A.; McCullers, J.; Adler, F., Mathematical model of a three-stage innate immune response to a pneumococcal lung infection, J. Theor. Biol., 276, 1, 106-116 (2011) · Zbl 1405.92148
[52] Stephen, W., (Jacob, B., The method of volume averaging (2013), Springer Science & Business Media: Springer Science & Business Media Technion - Israel Institute of Technology, Haifa, Israel)
[53] Stokes, C.; D. A., L., Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis, J Theor Biol, 152, 377-403 (1991)
[54] Togioka, B.; Galvagno, S.; Sumida, S.; Murphy, J.; Ouanes, J.; Wu, C., The role of perioperative high inspired oxygen therapy in reducing surgical site infection: a meta-analysis, Anesth. Analg., 114, 2, 334-342 (2012)
[55] Vermolen, F.; Adam, J., A Finite Element Model for Epidermal Wound Healing, Computational Science-ICCS 2007, 70-77 (2007), Springer
[56] Wood, B.; Quintard, M.; Whitaker, S., Calculation of effective diffusivities for biofilms and tissues, Biotechnol. Bioeng., 77, 5, 495-516 (2002)
[57] Yeong-Chul, K., Diffusivity of bacteria, Korean J. Chem. Eng., 13, 3, 282-287 (1996)
[58] Zimlichman, E.; Henderson, D.; Tamir, O.; Franz, C.; Song, P.; Yamin, C. K.; Keohane, C.; Denham, C. R.; Bates, D. W., Health care-associated infections: a meta-analysis of costs and financial impact on the us health care system, JAMA Intern Med, 173, 22, 2039-2046 (2013)
[59] Zwietering, M. H.; Jongenburger, I.; Rombouts, F. M.; van’t Riet, K., Modeling of the bacterial growth curve, Appl. Environ. Microbiol., 1875-1881 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.