×

Preserving exponential mean square stability and decay rates in two classes of theta approximations of stochastic differential equations. (English) Zbl 1291.60143

Summary: This paper examines exponential mean square stability of the split-step theta approximation and the stochastic theta method for the stochastic differential delay equations and stochastic ordinary differential equations (SODEs) under a coupled monotone condition on drift and diffusion coefficients. It is shown that for \(\theta \in [0,1/2]\) the two classes of the theta approximations can preserve the exponential mean square stability when some conditions on the stepsize and drift coefficient are imposed, but for \(\theta \in [1/2,1]\), without the globally Lipschitz continuity, these two classes of theta methods show exponentially mean square stability unconditionally. Moreover, for sufficiently small stepsize, the decay rate as measured by the bound of the Lyapunov exponent can be reproduced arbitrarily accurately. Some results in this paper extend the existing results for linear SODEs to nonlinear stochastic differential equations (SDEs), and also improve our previous results of numerical stability of nonlinear SDEs.

MSC:

60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
65C20 Probabilistic models, generic numerical methods in probability and statistics
65L20 Stability and convergence of numerical methods for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1112/S1461157000000322 · Zbl 0974.65008 · doi:10.1112/S1461157000000322
[2] DOI: 10.1016/j.cam.2005.01.018 · Zbl 1081.65011 · doi:10.1016/j.cam.2005.01.018
[3] DOI: 10.1023/A:1023659813269 · Zbl 1026.65004 · doi:10.1023/A:1023659813269
[4] DOI: 10.1007/s10543-006-0060-5 · Zbl 1121.60071 · doi:10.1007/s10543-006-0060-5
[5] DOI: 10.1098/rspa.2003.1247 · Zbl 1048.65004 · doi:10.1098/rspa.2003.1247
[6] DOI: 10.1016/j.camwa.2010.06.011 · Zbl 1201.65010 · doi:10.1016/j.camwa.2010.06.011
[7] Hairer E., Springer Series in Computational Mathematics 14, 2. ed. (1996)
[8] DOI: 10.1137/S003614299834736X · Zbl 0982.60051 · doi:10.1137/S003614299834736X
[9] DOI: 10.1137/S0036142901389530 · Zbl 1026.65003 · doi:10.1137/S0036142901389530
[10] DOI: 10.1112/S1461157000000462 · Zbl 1055.65009 · doi:10.1112/S1461157000000462
[11] DOI: 10.1137/060658138 · Zbl 1144.65005 · doi:10.1137/060658138
[12] DOI: 10.1016/j.cam.2012.03.005 · Zbl 1251.65003 · doi:10.1016/j.cam.2012.03.005
[13] Huang C., J. Comput. Appl. Math. (2013)
[14] DOI: 10.1007/978-3-662-12616-5 · doi:10.1007/978-3-662-12616-5
[15] DOI: 10.1016/S0378-4754(00)00224-X · doi:10.1016/S0378-4754(00)00224-X
[16] DOI: 10.1016/j.cam.2004.01.040 · Zbl 1059.65006 · doi:10.1016/j.cam.2004.01.040
[17] X.Mao, Stochastic Differential Equations and their Applications, Horwood Publishing Series in Mathematics & Applications, Horwood Publishing Limited, Chichester, 1997. · Zbl 0892.60057
[18] DOI: 10.1016/j.cam.2005.11.035 · Zbl 1114.65005 · doi:10.1016/j.cam.2005.11.035
[19] DOI: 10.1016/S0377-0427(02)00750-1 · Zbl 1015.65002 · doi:10.1016/S0377-0427(02)00750-1
[20] DOI: 10.1016/j.cam.2012.08.015 · Zbl 1262.65012 · doi:10.1016/j.cam.2012.08.015
[21] Milstein G.N., Scientific Computation (2004)
[22] DOI: 10.1017/S0962492900002920 · doi:10.1017/S0962492900002920
[23] DOI: 10.1080/00207160.2012.672731 · Zbl 1255.65145 · doi:10.1080/00207160.2012.672731
[24] Saito Y., World Sci. Ser. Appl. Anal. 2 pp 333– (1993)
[25] DOI: 10.1137/S0036142992228409 · Zbl 0869.60052 · doi:10.1137/S0036142992228409
[26] Schurz H., Dynam. Syst. Appl. 10 pp 11– (2001)
[27] DOI: 10.1080/00207160.2010.538388 · Zbl 1235.65010 · doi:10.1080/00207160.2010.538388
[28] DOI: 10.3934/dcds.2013.33.885 · Zbl 1270.65005 · doi:10.3934/dcds.2013.33.885
[29] DOI: 10.1007/s00211-010-0294-7 · Zbl 1193.65009 · doi:10.1007/s00211-010-0294-7
[30] DOI: 10.1016/j.cam.2013.07.007 · Zbl 1291.65028 · doi:10.1016/j.cam.2013.07.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.