×

Second-order small perturbation method for transmission from dielectric rough surfaces. (English) Zbl 1274.78039

Summary: Although the small perturbation method (SPM) for rough surface scattering has been studied extensively in problems in optics, remote sensing and propagation, there are fewer studies on rough surface transmission by the SPM. In this paper, from Huygens’ principle and the extinction theorem, the SPM is used to derive the transmitted field to the second order, and expressions for the bidirectional transmission coefficient and the total surface transmittance to the second order are developed for the random rough surface. The refined expressions can be applied to the situations where the transmission characteristics of a random rough surface need to be more accurately calculated. For example, to calculate the brightness temperature of stratified rough media by the incoherent method, we have to know the bidirectional transmission coefficient or transmittance of random rough surface as accurately as possible. The accuracy of the presented expressions is verified through the conservation of energy. It is shown that the transmission characteristics calculated by SPM to the first order violate conservation of energy, whereas solutions to the second order conform to energy conservation much better. This is particularly important for the calculation of transmittance or emissivity.

MSC:

78A45 Diffraction, scattering
78A48 Composite media; random media in optics and electromagnetic theory
78M35 Asymptotic analysis in optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beckmann P, The Scattering of Electromagnetic Waves from Rough Surfaces (1963) · Zbl 0114.20503
[2] DOI: 10.1002/cpa.3160040206 · Zbl 0043.20101 · doi:10.1002/cpa.3160040206
[3] DOI: 10.1364/JOSA.72.000539 · doi:10.1364/JOSA.72.000539
[4] DOI: 10.1103/PhysRevB.15.2371 · doi:10.1103/PhysRevB.15.2371
[5] Tsang L, Theory of Microwave Remote Sensing (1985)
[6] DOI: 10.1029/RS020i002p00161 · doi:10.1029/RS020i002p00161
[7] DOI: 10.1029/91RS02638 · doi:10.1029/91RS02638
[8] DOI: 10.1080/01431168708954800 · doi:10.1080/01431168708954800
[9] DOI: 10.1109/36.134085 · doi:10.1109/36.134085
[10] DOI: 10.1364/AO.19.000669 · doi:10.1364/AO.19.000669
[11] DOI: 10.1364/AO.22.003207 · doi:10.1364/AO.22.003207
[12] DOI: 10.1364/AO.25.002695 · doi:10.1364/AO.25.002695
[13] DOI: 10.1364/AO.32.005492 · doi:10.1364/AO.32.005492
[14] DOI: 10.1364/JOSAA.11.000197 · doi:10.1364/JOSAA.11.000197
[15] DOI: 10.1029/94RS00450 · doi:10.1029/94RS00450
[16] DOI: 10.1103/PhysRevB.37.6436 · doi:10.1103/PhysRevB.37.6436
[17] McGurn AR, Waves Random Complex Media 6 pp 251– (1996)
[18] DOI: 10.1364/JOSAA.16.002720 · doi:10.1364/JOSAA.16.002720
[19] DOI: 10.1364/JOSAA.20.002330 · doi:10.1364/JOSAA.20.002330
[20] Kima M-J, Waves Random Complex Media 5 pp 305– (1995)
[21] Tsang L, New York: Wiley pp 23– (2001)
[22] Kima M-J, Waves Random Complex Media 3 pp 325– (1993) · Zbl 0808.35092 · doi:10.1088/0959-7174/3/4/007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.