×

Bayesian modeling of temporal properties of infectious disease in a college student population. (English) Zbl 1352.62163

Summary: A Bayesian statistical model is developed for analysis of the time-evolving properties of infectious disease, with a particular focus on viruses. The model employs a latent semi-Markovian state process, and the state-transition statistics are driven by three terms: (i) a general time-evolving trend of the overall population, (ii) a semi-periodic term that accounts for effects caused by the days of the week, and (iii) a regression term that relates the probability of infection to covariates (here, specifically, to the Google Flu Trends data). Computations are performed using Markov Chain Monte Carlo sampling. Results are presented using a novel data set: daily self-reported symptom scores from hundreds of Duke University undergraduate students, collected over three academic years. The illnesses associated with these students are (imperfectly) labeled using real-time (RT) polymerase chain reaction (PCR) testing for several viruses, and gene-expression data were also analyzed. The statistical analysis is performed on the daily, self-reported symptom scores, and the RT PCR and gene-expression data are employed for analysis and interpretation of the model results.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
92C60 Medical epidemiology
62-07 Data analysis (statistics) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1073/pnas.1103002108 · doi:10.1073/pnas.1103002108
[2] DOI: 10.1198/016214508000000869 · Zbl 1286.62091 · doi:10.1198/016214508000000869
[3] DOI: 10.1002/sim.1912 · doi:10.1002/sim.1912
[4] DOI: 10.1186/1471-2105-11-552 · doi:10.1186/1471-2105-11-552
[5] Chen M., Generalized Linear Models: A Bayesian Prospective (2000)
[6] DOI: 10.1198/jasa.2011.ap10611 · Zbl 1234.62139 · doi:10.1198/jasa.2011.ap10611
[7] DOI: 10.1111/j.1467-9469.2006.00522.x · Zbl 1142.62099 · doi:10.1111/j.1467-9469.2006.00522.x
[8] DOI: 10.1080/01621459.1996.10476956 · doi:10.1080/01621459.1996.10476956
[9] Dimmock N., Introduction to Modern Virology (2007)
[10] Dong W., in Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence pp 227– (2012)
[11] DOI: 10.1080/01621459.2012.713876 · Zbl 1258.62102 · doi:10.1080/01621459.2012.713876
[12] Fox E., Bayesian nonparametric covariance regression · Zbl 1351.62090
[13] DOI: 10.1038/nature07634 · doi:10.1038/nature07634
[14] DOI: 10.1137/S0036144500371907 · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[15] Jahrer M., J. Mach. Learn. Res 18 pp 61– (2012)
[16] DOI: 10.1111/j.1541-0420.2011.01687.x · Zbl 1251.62045 · doi:10.1111/j.1541-0420.2011.01687.x
[17] DOI: 10.1016/j.idc.2007.06.004 · doi:10.1016/j.idc.2007.06.004
[18] DOI: 10.1016/j.jmp.2005.11.006 · Zbl 1138.91594 · doi:10.1016/j.jmp.2005.11.006
[19] DOI: 10.1111/j.0006-341X.2004.00224.x · Zbl 1274.62375 · doi:10.1111/j.0006-341X.2004.00224.x
[20] O’Neill P., Appl. Stat 49 pp 517– (2000)
[21] DOI: 10.1145/2339530.2339584 · doi:10.1145/2339530.2339584
[22] Sun Y., PLOS One 6 (11) (2011)
[23] Trifonov V., N. Engl. J. Med 361 (2009) pp 115–
[24] DOI: 10.1007/978-1-4757-9365-9 · doi:10.1007/978-1-4757-9365-9
[25] DOI: 10.1198/jasa.2010.ap09581 · Zbl 1388.62337 · doi:10.1198/jasa.2010.ap09581
[26] DOI: 10.1016/S0165-1684(02)00378-X · Zbl 1051.62097 · doi:10.1016/S0165-1684(02)00378-X
[27] DOI: 10.1016/j.chom.2009.07.006 · doi:10.1016/j.chom.2009.07.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.