Colomb, Pierre; Irlande, Alexis; Raynaud, Olivier; Renaud, Yoan Recursive decomposition tree of a Moore co-family and closure algorithm. (English) Zbl 1311.06004 Ann. Math. Artif. Intell. 70, No. 1-2, 107-122 (2014). MSC: 06A15 06B05 PDF BibTeX XML Cite \textit{P. Colomb} et al., Ann. Math. Artif. Intell. 70, No. 1--2, 107--122 (2014; Zbl 1311.06004) Full Text: DOI HAL OpenURL
Colomb, Pierre; Irlande, Alexis; Raynaud, Olivier; Renaud, Yoan Recursive decomposition and bounds of the lattice of Moore co-families. (English) Zbl 1311.06003 Ann. Math. Artif. Intell. 67, No. 2, 109-122 (2013). MSC: 06A15 05A15 06B05 PDF BibTeX XML Cite \textit{P. Colomb} et al., Ann. Math. Artif. Intell. 67, No. 2, 109--122 (2013; Zbl 1311.06003) Full Text: DOI OpenURL
Colomb, Pierre; Irlande, Alexis; Raynaud, Olivier Counting of Moore families for \(n=7\). (English) Zbl 1274.05013 Kwuida, Léonard (ed.) et al., Formal concept analysis. 8th international conference, ICFCA 2010, Agadir, Morocco, March 15–18, 2010. Proceedings. Berlin: Springer (ISBN 978-3-642-11927-9/pbk). Lecture Notes in Computer Science 5986. Lecture Notes in Artificial Intelligence, 72-87 (2010). MSC: 05A15 06A15 PDF BibTeX XML Cite \textit{P. Colomb} et al., Lect. Notes Comput. Sci. 5986, 72--87 (2010; Zbl 1274.05013) Full Text: DOI OpenURL
Colomb, Pierre; Raynaud, Olivier; Irlande, Alexis Algorithms for counting Moore families: application to the case \(n=7\). (Spanish. English summary) Zbl 1260.05007 Bol. Mat. (N.S.) 16, No. 1, 57-77 (2009). MSC: 05A15 06A07 06A15 PDF BibTeX XML Cite \textit{P. Colomb} et al., Bol. Mat. (N.S.) 16, No. 1, 57--77 (2009; Zbl 1260.05007) OpenURL