×

Dynamics in multi-Lane TASEPs coupled with asymmetric lane-changing rates. (English) Zbl 1380.90086

Summary: The paper studies periodic two-dimensional exclusion processes constituted by multi-lane totally asymmetric simple exclusion processes with the effect of asymmetric lane-changing rates. Particles in lane \(i\) can move forward with a rate \({p_i}\) or hop into the adjacent lane \({i-1}\) (\({i+1}\)) with a rate \(\omega_i^u\) (\(\omega_i^d\)). Complemented by Monte Carlo simulations, exact solutions have been derived. According to the detailed balance principle, two different cases \(\omega_{i - 1}^d = \omega_i^u\) and \(\omega_i^u = \omega_{i + 1}^d\) are studied here. Dynamics of the system can be revealed by exact solutions, which can match well with simulation ones.

MSC:

90B20 Traffic problems in operations research
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gingrich, T.R., Horowitz, J.M., Perunov, N., et al.: Dissipation bounds all steady-state current fluctuations. Phys. Rev. Lett. 116(12), 120601 (2016) · doi:10.1103/PhysRevLett.116.120601
[2] Prolhac, S.: Finite-time fluctuations for the totally asymmetric exclusion process. Phys. Rev. Lett. 116(9), 090601 (2016) · doi:10.1103/PhysRevLett.116.090601
[3] Reithmann, E., Reese, L., Frey, E.: Nonequilibrium diffusion and capture mechanism ensures tip localization of regulating proteins on dynamic filaments. Phys. Rev. Lett. 117(7), 078102 (2016) · doi:10.1103/PhysRevLett.117.078102
[4] Le, D.P., Majumdar, S.N., Rosso, A., et al.: Exact short-time height distribution in the one-dimensional Kardar-Parisi-Zhang equation and edge fermions at high temperature. Phys. Rev. Lett. 117(7), 070403 (2016) · doi:10.1103/PhysRevLett.117.070403
[5] Chou, T., Mallick, K., Zia, R.K.P.: Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport. Rep. Prog. Phys. 74(11), 116601 (2011) · doi:10.1088/0034-4885/74/11/116601
[6] Sato, J., Nishinari, K.: Relaxation dynamics of the asymmetric simple exclusion process with Langmuir kinetics on a ring. Phys. Rev. E 93(4), 042113 (2016) · doi:10.1103/PhysRevE.93.042113
[7] Bustingorry, S.: From single-file diffusion to two-dimensional cage diffusion and generalization of the totally asymmetric simple exclusion process to higher dimensions. Phys. Rev. E 93(1), 012134 (2016) · doi:10.1103/PhysRevE.93.012134
[8] Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067-1141 (2001) · doi:10.1103/RevModPhys.73.1067
[9] Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199-329 (2000) · doi:10.1016/S0370-1573(99)00117-9
[10] Schütz, G.: In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical phenomena, Academic Press, London (2000) · Zbl 1063.82001
[11] Jiang, R., Wang, Y.Q., Kolomeisky, A.B., et al.: Phase diagram structures in a periodic one-dimensional exclusion process. Phys. Rev. E. 87(1), 012107 (2013) · doi:10.1103/PhysRevE.87.012107
[12] Wang, Y.Q., Jiang, R., Kolomeisky, A.B., et al.: Bulk induced phase transition in driven diffusive systems. Sci. Rep-UK 4, 5459 (2014) · doi:10.1038/srep05459
[13] Wang, Y.Q., Jiang, R., Wu, Q.S., et al.: Phase transitions in three-lane TASEPs with weak coupling. Mod. Phys. Lett. B 15, 1450123 (2014) · doi:10.1142/S0217984914501231
[14] Wang, Y.Q., Jiang, R., Wu, Q.S., et al.: Phase transitions in coupled exclusion processes constituted by TASEP and two-lane SEPs. Mod. Phys. Lett. B 8, 1450064 (2014) · doi:10.1142/S021798491450064X
[15] Qiang, S.J., Jia, B., Jiang, R., et al.: Symmetrical design of strategy-pairs for enplaning and deplaning an airplane. J. Air Transp. Manag. 54, 52-60 (2016) · doi:10.1016/j.jairtraman.2016.03.020
[16] Frey, E., Parmeggiani, A., Franosch, T.: Collective phenomena in intracellular processes. Genome Inform. 15, 46-55 (2004)
[17] Zia, R.K.P., Dong, J.J., Schmittmann, B.: Modeling translation in protein synthesis with TASEP: A tutorial and recent developments. J. Stat. Phys. 144(2), 405-428 (2011) · Zbl 1226.82068 · doi:10.1007/s10955-011-0183-1
[18] Celis-Garza, D., Teimouri, H., Kolomeisky, A.B.: Correlations and symmetry of interactions influence collective dynamics of molecular motors. J. Stat. Mech Theory E 4, P04013 (2015) · doi:10.1088/1742-5468/2015/04/P04013
[19] Parmeggiani, A.: In: Appert-Rolland , C., Chevoir, F., Gondret, P., Lassarre, S., Lebacque, J.P., Schreckenberg, M. (eds.) Traffic and Granular Flow ’07, (Springer, Berlin, 2009) · Zbl 1162.90001
[20] Karzig, T., von Oppen, F.: Signatures of critical full counting statistics in a quantum-dot chain. Phys. Rev. B 81(4), 045317 (2010) · doi:10.1103/PhysRevB.81.045317
[21] Liu, M.Z., Tuo, X.G., Li, Z., et al.: Asymmetric exclusion process for modeling of information flow. Comput. Phys. Commun. 183, 316-319 (2012) · doi:10.1016/j.cpc.2011.10.013
[22] Morimoto, T., Kobayashi, S., Nagao, Y., et al.: Learning curve constraint cell automaton model for the lean production of CFRP airframe components. Int. J. Adv. Manuf. Tech. 84, 2127 (2016) · doi:10.1007/s00170-015-7868-6
[23] Sahoo, M., Klumpp, S.: Asymmetric exclusion process with a dynamic roadblock and open boundaries. J. Phys. A Math. Theor. 49(31), 315001 (2016) · Zbl 1351.82067 · doi:10.1088/1751-8113/49/31/315001
[24] Yesil, A.F., Yalabik, M.C.: Dynamical phase transitions in totally asymmetric simple exclusion processes with two types of particles under periodically driven boundary conditions. Phys. Rev. E 93(1), 012123 (2016) · doi:10.1103/PhysRevE.93.012123
[25] Ichiki, S., Sato, J., Nishinari, K.: Totally asymmetric simple exclusion process on a periodic lattice with Langmuir kinetics depending on the occupancy of the forward neighboring site. Eur. Phys. J. B. 89(5), 1-5 (2016) · doi:10.1140/epjb/e2016-70192-5
[26] Tang, T.Q., Li, C.Y., Huang, H.J., Shang, H.Y.: A new fundamental diagram theory with the individual difference of the driver’s perception ability. Nonlinear Dyn. 67, 2255-2265 (2012) · doi:10.1007/s11071-011-0143-y
[27] Tang, T.Q., Shi, Y.F., Wang, Y.P., Yu, G.Z.: A bus-following model with an on-line bus station. Nonlinear Dyn. 70, 209-215 (2012) · doi:10.1007/s11071-012-0445-8
[28] Wang, T., Gao, Z.Y., Zhang, J., Zhao, X.M.: A new lattice hydrodynamic model for two-lane traffic with the consideration of density difference effect. Nonlinear Dyn. 75, 27-34 (2014) · Zbl 1281.90018 · doi:10.1007/s11071-013-1046-x
[29] Wang, T., Gao, Z.Y., Zhang, J.: Stabilization effect of multiple density difference in the lattice hydrodynamic model. Nonlinear Dyn. 73, 2197-2205 (2013) · Zbl 1275.46046 · doi:10.1007/s11071-013-0934-4
[30] Zhang, Y.: Domain wall of the totally asymmetric exclusion process without particle number conservation. Chin. J. Phys. 48, 607-618 (2010)
[31] Zhang, Y.: Microtubule length dependence of motor traffic in cells. Eur. Phys. J. E 35, 101 (2012) · doi:10.1140/epje/i2012-12101-3
[32] Yang, X.Q., Kang, Q., Zhang, W., et al.: Effects of detachment and size of particles in totally asymmetric simple exclusion processes. Phys. A 379, 595 (2007) · doi:10.1016/j.physa.2007.01.007
[33] Neri, I., Kern, N., Parmeggiani, A.: Exclusion processes on networks as models for cytoskeletal transport. New J. Phys. 15(8), 085005 (2013) · doi:10.1088/1367-2630/15/8/085005
[34] Ezaki, T., Nishinari, K.: A balance network for the asymmetric simple exclusion process. J. Stat. Mech-Theory E 2012(11), P11002 (2012) · Zbl 1277.60173 · doi:10.1088/1742-5468/2012/11/P11002
[35] Bittihn, S., Schadschneider, A.: Braess paradox in a network of totally asymmetric exclusion processes. Phys. Rev. E 94(6), 062312 (2016) · doi:10.1103/PhysRevE.94.062312
[36] Kuan, H.S., Betterton, M.D.: Phase-plane analysis of the totally asymmetric simple exclusion process with binding kinetics and switching between antiparallel lanes. arXiv preprint arXiv:1604.00690 (2016)
[37] Midha, T., Gupta, A.K.: Role of interactions and correlations on collective dynamics of molecular motors along parallel filaments. arXiv preprint arXiv:1611.07254 (2016) · Zbl 1383.82037
[38] Daga, B., Mondal, S., Chandra, A.K. et al.: Nonequilibrium steady states in a closed inhomogeneous asymmetric exclusion process with particle nonconservation. arXiv preprint arXiv:1609.03814 (2016)
[39] Bressloff, P.C., Karamched, B.R.: Model of reversible vesicular transport with exclusion. J. Phys. A Math. Theor. 49(34), 345602 (2016) · Zbl 1348.92032 · doi:10.1088/1751-8113/49/34/345602
[40] Xiao, S., Dong, P., Zhang, Y., et al.: Strong asymmetric coupling of two parallel exclusion processes: effect of unequal injection rates. Int. J. Theor. Phys. 55(3), 1642-1651 (2016) · Zbl 1338.82041 · doi:10.1007/s10773-015-2801-1
[41] Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A 40, R333 (2007) · Zbl 1155.82325 · doi:10.1088/1751-8113/40/46/R01
[42] Sopasakis, A., Katsoulakis, M.A.: Information metrics for improved traffic model fidelity through sensitivity analysis and data assimilation. Transp. Res. B Methodol. 86, 1-18 (2016) · doi:10.1016/j.trb.2016.01.003
[43] Ma, X., Zheng, W.F., Jiang, B.S., et al.: A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential. Chin. Phys. B 25(10), 108902 (2016) · doi:10.1088/1674-1056/25/10/108902
[44] Siqueira, A.F., Peixoto, C.J.T., Wu, C., et al.: Effect of stochastic transition in the fundamental diagram of traffic flow. Transp. Res. B Methodol. 87, 1-13 (2016) · doi:10.1016/j.trb.2016.02.003
[45] Klein, S., Appert-Rolland, C., Evans, M.R.: Spontaneous pulsing states in an active particle system. arXiv preprint arXiv:1604.08492 (2016) · Zbl 1457.82255
[46] Ezaki, T., Katsuhiro, N.: Exact solution of a heterogeneous multilane asymmetric simple exclusion process. Phys. Rev. E 84, 061141 (2011) · doi:10.1103/PhysRevE.84.061141
[47] Neri, I., Kern, N., Parmeggiani, A.: Totally asymmetric simple exclusion process on networks. Phys. Rev. Lett. 107, 068702 (2011) · doi:10.1103/PhysRevLett.107.068702
[48] Neri, I., Kern, N., Parmeggiani, A.: Modeling cytoskeletal traffic: an interplay between passive diffusion and active transport. Phys. Rev. Lett. 110, 098102 (2013) · doi:10.1103/PhysRevLett.110.098102
[49] Mora, T.: Solving Polynomial Equation Systems. Cambridge University Press, Cambridge (2016) · Zbl 1362.12001 · doi:10.1017/CBO9781316271902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.