×

Direct numerical simulation of free falling sphere in creeping flow. (English) Zbl 1267.76087

From the summary: In the present study, direct numerical simulations (DNS) are performed on single and a swarm of particles settling under the action of gravity. The simulations have been carried out in the creeping flow range of Reynolds number from 0.01 to 1 for understanding the hindrance effect, of the other particles, on the settling velocity and drag coefficient. The DNS code is a non-Lagrange multiplier-based fictitious-domain method. It has been observed that the time averaged settling velocity of the particle in the presence of other particles, decreases with an increase in the number of particles surrounding it (from 9 particles to 245 particles). The effect of the particle volume fraction on the drag coefficient has also been studied, and it has been observed that the computed values of drag coefficients are in good agreement with the correlations proposed in the literature.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76T20 Suspensions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/0300-9467(73)80008-5 · doi:10.1016/0300-9467(73)80008-5
[2] DOI: 10.1146/annurev.fl.20.010188.000551 · doi:10.1146/annurev.fl.20.010188.000551
[3] DOI: 10.1016/j.powtec.2004.11.041 · doi:10.1016/j.powtec.2004.11.041
[4] Darby R., Encyclopedia of fluid mechanics 5 pp 48– (1986)
[5] DOI: 10.1063/1.448997 · doi:10.1063/1.448997
[6] DOI: 10.1016/S0021-9991(03)00349-8 · Zbl 1047.76042 · doi:10.1016/S0021-9991(03)00349-8
[7] DOI: 10.1002/aic.690360404 · doi:10.1002/aic.690360404
[8] DOI: 10.1016/j.powtec.2005.05.057 · doi:10.1016/j.powtec.2005.05.057
[9] DOI: 10.1002/andp.19063240204 · JFM 37.0811.01 · doi:10.1002/andp.19063240204
[10] Ergun S., Chemical Engineering Progress 48 pp 89– (1952)
[11] Esmaeeli A., Numerical simulations of bubbly flows (1995)
[12] DOI: 10.1017/S0022112094002764 · Zbl 0876.76040 · doi:10.1017/S0022112094002764
[13] DOI: 10.1080/10618560802680211 · Zbl 1184.76889 · doi:10.1080/10618560802680211
[14] DOI: 10.1016/0009-2509(67)80149-0 · doi:10.1016/0009-2509(67)80149-0
[15] DOI: 10.1080/10618560902754932 · Zbl 1184.76886 · doi:10.1080/10618560902754932
[16] DOI: 10.1016/j.ces.2006.08.030 · doi:10.1016/j.ces.2006.08.030
[17] DOI: 10.1016/j.powtec.2004.09.025 · doi:10.1016/j.powtec.2004.09.025
[18] Gidaspow D., Multiphase flow and fluidization: continuum and kinetic theory descriptions (1994) · Zbl 0789.76001
[19] DOI: 10.1016/S0301-9322(98)00048-2 · Zbl 1137.76592 · doi:10.1016/S0301-9322(98)00048-2
[20] DOI: 10.1006/jcph.2000.6542 · Zbl 1047.76097 · doi:10.1006/jcph.2000.6542
[21] DOI: 10.1016/j.powtec.2003.10.006 · doi:10.1016/j.powtec.2003.10.006
[22] DOI: 10.1063/1.1722635 · Zbl 0081.40601 · doi:10.1063/1.1722635
[23] DOI: 10.1016/S0032-5910(99)00225-9 · doi:10.1016/S0032-5910(99)00225-9
[24] DOI: 10.1016/0301-9322(95)00068-2 · Zbl 1135.76442 · doi:10.1016/0301-9322(95)00068-2
[25] DOI: 10.1007/BF00717645 · Zbl 0754.76054 · doi:10.1007/BF00717645
[26] Jin, S. A parallel algorithm for the direct numerical simulation of 3D inertial particle sedimentation. Conference proceedings of the 16th annual conference of the CFD Society of Canada. Edited by: Bergstrom, D. J. and Spiteri, R. 9–11, June. Saskatoon, Saskatchewan, Canada
[27] DOI: 10.1080/10618560902973748 · Zbl 1184.76694 · doi:10.1080/10618560902973748
[28] DOI: 10.1016/S0045-7825(96)01223-6 · Zbl 0893.76043 · doi:10.1016/S0045-7825(96)01223-6
[29] Joshi J. B., Chemical Engineering Research and Design 61 pp 143– (1983)
[30] DOI: 10.1016/j.powtec.2006.06.012 · doi:10.1016/j.powtec.2006.06.012
[31] DOI: 10.1016/0095-8522(51)90036-0 · doi:10.1016/0095-8522(51)90036-0
[32] DOI: 10.1016/j.ces.2007.07.005 · doi:10.1016/j.ces.2007.07.005
[33] DOI: 10.1016/j.cej.2008.01.040 · doi:10.1016/j.cej.2008.01.040
[34] DOI: 10.1017/S0022112001006474 · Zbl 1037.76037 · doi:10.1017/S0022112001006474
[35] Pandit A. B., Reviews in Chemical Engineering 14 pp 321– (1998) · doi:10.1515/REVCE.1998.14.4-5.321
[36] DOI: 10.1122/1.550692 · doi:10.1122/1.550692
[37] Pettyjohn E. S., Chemical Engineering Progress 44 pp 157– (1948)
[38] DOI: 10.1016/0021-9991(77)90100-0 · Zbl 0403.76100 · doi:10.1016/0021-9991(77)90100-0
[39] DOI: 10.1016/0021-9991(80)90007-8 · Zbl 0447.92009 · doi:10.1016/0021-9991(80)90007-8
[40] DOI: 10.1016/j.ces.2009.12.009 · doi:10.1016/j.ces.2009.12.009
[41] Richardson J. F., Transactions of the Institution of Chemical Engineers 32 pp 35– (1954)
[42] DOI: 10.2514/3.6164 · doi:10.2514/3.6164
[43] DOI: 10.1103/PhysRevLett.75.958 · doi:10.1103/PhysRevLett.75.958
[44] DOI: 10.1063/1.1702338 · doi:10.1063/1.1702338
[45] DOI: 10.1017/S0022112093002046 · Zbl 0788.76085 · doi:10.1017/S0022112093002046
[46] DOI: 10.1063/1.1512918 · Zbl 1185.76073 · doi:10.1063/1.1512918
[47] DOI: 10.1016/0095-8522(65)90016-4 · doi:10.1016/0095-8522(65)90016-4
[48] DOI: 10.1016/j.ces.2006.08.037 · doi:10.1016/j.ces.2006.08.037
[49] DOI: 10.1122/1.550062 · doi:10.1122/1.550062
[50] DOI: 10.1021/j150458a001 · doi:10.1021/j150458a001
[51] DOI: 10.1016/j.jcp.2006.10.028 · Zbl 1123.76069 · doi:10.1016/j.jcp.2006.10.028
[52] Wen C. Y., Chemical Engineering Progress Symposium (1966)
[53] DOI: 10.1016/S0032-5910(99)00277-6 · doi:10.1016/S0032-5910(99)00277-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.