×

Riemann-Christoffel tensor in differential geometry of fractional order application to fractal space-time. (English) Zbl 1302.35404

Summary: By using fractional differences, one recently proposed an alternative to the formulation of fractional differential calculus, of which the main characteristics is a new fractional Taylor series and its companion Rolle’s formula which apply to non-differentiable functions. The key is that now we have at hand a differential increment of fractional order which can be manipulated exactly like in the standard Leibniz differential calculus. Briefly the fractional derivative is the quotient of fractional increments. It has been proposed that this calculus can be used to construct a differential geometry on manifold of fractional order. The present paper, on the one hand, refines the framework, and on the other hand, contributes some new results related to arc length of fractional curves, area on fractional differentiable manifold, covariant fractal derivative, Riemann-Christoffel tensor of fractional order, fractional differential equations of fractional geodesic, strip modeling of fractal space time and its relation with Lorentz transformation. The relation with Nottale’s fractal space-time theory then appears in quite a natural way.

MSC:

35R11 Fractional partial differential equations
53B20 Local Riemannian geometry
26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/j.aml.2004.05.014 · Zbl 1082.60029 · doi:10.1016/j.aml.2004.05.014
[2] DOI: 10.1016/j.camwa.2006.02.001 · Zbl 1137.65001 · doi:10.1016/j.camwa.2006.02.001
[3] DOI: 10.1017/CBO9780511754548 · doi:10.1017/CBO9780511754548
[4] DOI: 10.1093/imamat/33.2.109 · Zbl 0565.30034 · doi:10.1093/imamat/33.2.109
[5] Campos L. M. C., Recent Advances in Fractional Calculus (1993)
[6] Djrbashian M. M., Izv. Acad. Nauk Armjanskoi SSR 3 pp 3– (1968)
[7] DOI: 10.1016/j.mcm.2005.10.003 · Zbl 1130.92043 · doi:10.1016/j.mcm.2005.10.003
[8] DOI: 10.1007/BF02845622 · doi:10.1007/BF02845622
[9] DOI: 10.1103/PhysRevLett.80.214 · Zbl 0945.82005 · doi:10.1103/PhysRevLett.80.214
[10] Letnikov A. V., Math. Sb. 3 pp 1– (1868)
[11] Liouville J., J. Ecole Polytechnique 13 pp 71– (1832)
[12] Miller K. S., An Introduction to the Fractional Calculus and Fractional Differential Equations (1933)
[13] Nishimoto K., Fractional Calculus (1989)
[14] DOI: 10.1142/1579 · doi:10.1142/1579
[15] Oldham K. B., The Fractional Calculus. Theory and Application of Differentiation and Integration to Arbitrary Order (1974) · Zbl 0292.26011
[16] DOI: 10.1137/0502004 · Zbl 0215.12101 · doi:10.1137/0502004
[17] Podlubny I., Fractional Differential Equations (1999) · Zbl 0924.34008
[18] DOI: 10.1007/BFb0067095 · doi:10.1007/BFb0067095
[19] Samko S. G., Fractional Integral and Derivatives. Theory and Applications (1987)
[20] Jumarie G., Int. J. Syst. Sc. 24 pp 113– (1993)
[21] DOI: 10.1016/j.aml.2004.09.012 · Zbl 1075.60068 · doi:10.1016/j.aml.2004.09.012
[22] DOI: 10.1007/s10114-012-0507-3 · Zbl 1266.26013 · doi:10.1007/s10114-012-0507-3
[23] DOI: 10.1016/j.ins.2012.06.008 · Zbl 1268.94017 · doi:10.1016/j.ins.2012.06.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.