×

Scaling and dissipation in the GOY shell model. (English) Zbl 1039.76508

Summary: This is a paper about multifractal scaling and dissipation in a shell model of turbulence, called the Gledzer-Ohkitani-Yamada (GOY) model. This set of equations describes a one-dimensional cascade of energy towards higher wave vectors. When the model is chaotic, the high-wave-vector velocity is a product of roughly independent multipliers, one for each logarithmic momentum shell. The appropriate tool for studying the multifractal properties of this model is shown to be the energy flux on each shell rather than the velocity on each shell. Using this quantity, one can obtain better measurements of the deviations from Kolmogorov scaling (in the GOY dynamics) than were available up to now. These deviations are seen to depend upon the details of inertial-range structure of the model, and hence are not universal. However, once the conserved quantities of the model are fixed to have the same scaling structure as energy and helicity, these deviations seem to depend only weakly upon the scale parameter of the model. The connection between multifractality in the velocity distribution and multifractality in the dissipation is analyzed. Arguments suggest that the connection is universal for models of this character, but the model has a behavior different from that of real turbulence. Also, the scaling behavior of time correlations of shell velocities, of the dissipation, and of Lyapunov indices are predicted. These scaling arguments can be carried over, with little change, to multifractal models of real turbulence.

MSC:

76F02 Fundamentals of turbulence
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Kolmogorov A. N., C.R. Acad. Sci. USSR 30 pp 299– (1941)
[2] DOI: 10.1063/1.868357 · doi:10.1063/1.868357
[3] DOI: 10.1103/PhysRevLett.73.432 · doi:10.1103/PhysRevLett.73.432
[4] DOI: 10.1103/PhysRevE.49.2887 · doi:10.1103/PhysRevE.49.2887
[5] DOI: 10.1063/1.868255 · Zbl 0865.76030 · doi:10.1063/1.868255
[6] DOI: 10.1103/PhysRevE.49.4044 · doi:10.1103/PhysRevE.49.4044
[7] Lebedev V. V., JETP Lett. 59 pp 577– (1994)
[8] DOI: 10.1017/S0022112062000518 · Zbl 0112.42003 · doi:10.1017/S0022112062000518
[9] DOI: 10.1017/S0022112074000711 · Zbl 0289.76031 · doi:10.1017/S0022112074000711
[10] DOI: 10.1103/PhysRevLett.59.1424 · doi:10.1103/PhysRevLett.59.1424
[11] DOI: 10.1017/S0022112084000513 · doi:10.1017/S0022112084000513
[12] DOI: 10.1016/0167-2789(90)90035-N · Zbl 0718.60097 · doi:10.1016/0167-2789(90)90035-N
[13] DOI: 10.1016/0167-2789(93)90132-K · Zbl 0790.76041 · doi:10.1016/0167-2789(93)90132-K
[14] DOI: 10.1063/1.858446 · doi:10.1063/1.858446
[15] DOI: 10.1063/1.868435 · doi:10.1063/1.868435
[16] DOI: 10.1103/PhysRevE.49.4052 · doi:10.1103/PhysRevE.49.4052
[17] DOI: 10.1103/PhysRevLett.70.3251 · doi:10.1103/PhysRevLett.70.3251
[18] DOI: 10.1017/S0022112085001136 · Zbl 0587.76080 · doi:10.1017/S0022112085001136
[19] DOI: 10.1017/S0022112085001136 · Zbl 0587.76080 · doi:10.1017/S0022112085001136
[20] DOI: 10.1017/S0022112085001136 · Zbl 0587.76080 · doi:10.1017/S0022112085001136
[21] DOI: 10.1063/1.857926 · Zbl 0746.76056 · doi:10.1063/1.857926
[22] DOI: 10.1016/0378-4371(93)90382-E · doi:10.1016/0378-4371(93)90382-E
[23] DOI: 10.1016/0378-4371(93)90382-E · doi:10.1016/0378-4371(93)90382-E
[24] DOI: 10.1103/PhysRevE.50.2784 · doi:10.1103/PhysRevE.50.2784
[25] Gledzer E. B., Sov. Phys. Dokl. 18 pp 216– (1973)
[26] DOI: 10.1143/PTP.81.329 · doi:10.1143/PTP.81.329
[27] DOI: 10.1103/PhysRevLett.60.983 · doi:10.1103/PhysRevLett.60.983
[28] DOI: 10.1103/PhysRevLett.60.983 · doi:10.1103/PhysRevLett.60.983
[29] DOI: 10.1103/PhysRevLett.60.983 · doi:10.1103/PhysRevLett.60.983
[30] DOI: 10.1103/PhysRevA.43.798 · doi:10.1103/PhysRevA.43.798
[31] DOI: 10.1063/1.858766 · Zbl 0799.76032 · doi:10.1063/1.858766
[32] DOI: 10.1016/0167-2789(93)90012-P · Zbl 0771.76027 · doi:10.1016/0167-2789(93)90012-P
[33] DOI: 10.1088/0305-4470/20/12/037 · doi:10.1088/0305-4470/20/12/037
[34] DOI: 10.1088/0305-4470/20/12/037 · doi:10.1088/0305-4470/20/12/037
[35] DOI: 10.1103/PhysRevE.50.285 · doi:10.1103/PhysRevE.50.285
[36] DOI: 10.1016/0167-2789(81)90074-9 · doi:10.1016/0167-2789(81)90074-9
[37] DOI: 10.1016/0375-9601(94)91046-4 · doi:10.1016/0375-9601(94)91046-4
[38] DOI: 10.1103/PhysRevLett.71.3043 · Zbl 0972.65509 · doi:10.1103/PhysRevLett.71.3043
[39] DOI: 10.1103/PhysRevLett.72.336 · doi:10.1103/PhysRevLett.72.336
[40] DOI: 10.1017/S0022112091001830 · Zbl 0717.76061 · doi:10.1017/S0022112091001830
[41] DOI: 10.1016/0375-9601(91)90353-A · doi:10.1016/0375-9601(91)90353-A
[42] DOI: 10.1016/0375-9601(91)90353-A · doi:10.1016/0375-9601(91)90353-A
[43] DOI: 10.1016/0375-9601(91)90353-A · doi:10.1016/0375-9601(91)90353-A
[44] DOI: 10.1088/0305-4470/18/12/013 · Zbl 0578.58027 · doi:10.1088/0305-4470/18/12/013
[45] DOI: 10.1098/rspa.1938.0032 · JFM 64.1454.02 · doi:10.1098/rspa.1938.0032
[46] DOI: 10.1103/PhysRevA.33.1141 · Zbl 1184.37028 · doi:10.1103/PhysRevA.33.1141
[47] DOI: 10.1103/PhysRevE.48.R29 · doi:10.1103/PhysRevE.48.R29
[48] DOI: 10.1103/PhysRevLett.70.166 · doi:10.1103/PhysRevLett.70.166
[49] DOI: 10.1103/PhysRevLett.73.959 · doi:10.1103/PhysRevLett.73.959
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.