×

zbMATH — the first resource for mathematics

An elementary approach to polynomial interpolation in universal algebras. (English) Zbl 0518.08003

MSC:
08A40 Operations and polynomials in algebraic structures, primal algebras
08A05 Structure theory of algebraic structures
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. Burosch, K.-D. Drews, W. Harnau andD. Lau,Conditional monotonous functions over a finite set, I, MTA Számitástech. Automat. Kutató Int. Közl. Budapest23 (1979), 43–53.
[2] B. Csákány,Homogeneous algebras are functionally complete, Algebra Universalis,11 (1980), 149–158. · Zbl 0451.08004 · doi:10.1007/BF02483093
[3] B. Csákány andT. Gavalcová,Finite homogeneous algebras, I, Acta Sci. Math.,42 (1980), 57–65.
[4] B. Csákány andT. Gavalcová,Inductive clones, Finite Algebra and Multiple-Valued Logic (Proc. Conf. Szeged, 1979), Colloq. Math. Soc. J. Bolyai, North-Holland, Amsterdam (to appear).
[5] E. Fried andA. F. Pixley,The dual discriminator function in universal algebra, Acta Sci. Math.41 (1979), 83–100. · Zbl 0395.08001
[6] B. Ganter andH. Werner,Equational classes of Steiner systems, Algebra Universalis5 (1975), 125–140. · Zbl 0312.08002 · doi:10.1007/BF02485242
[7] H. Hanani,On quadruply systems, Canad. J. Math.12, (1960), 145–157. · Zbl 0092.01202 · doi:10.4153/CJM-1960-013-3
[8] H. K. Kaiser,A class of locally complete universal algebras, J. London Math. Soc.9 (1974), 5–8. · Zbl 0293.08002 · doi:10.1112/jlms/s2-9.1.5
[9] H. K. Kaiser,Über lokal polynomvollständige universale Algebren, Abh. Math. Sem. Univ. Hamburg43 (1975), 158–165. · Zbl 0308.08002 · doi:10.1007/BF02995945
[10] I. Rosenberg,Über die funktionale Vollständigkeit in den mehrwertigen Logiken, Rozpravy Česk. Akad. Věd, Ser. Math. Nat. Sci.80 (1970), 3–93.
[11] S. Świerczkowski,Algebras which are independently generated by every n elements, Fund. Math.49 (1960), 93–104. · Zbl 0115.01201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.