×

An analysis of approximation algorithms for iterated stochastic integrals and a Julia and Matlab simulation toolbox. (English) Zbl 07676509

Summary: For the approximation and simulation of twofold iterated stochastic integrals and the corresponding Lévy areas w.r.t. a multi-dimensional Wiener process, we review four algorithms based on a Fourier series approach. Especially, the very efficient algorithm due to Wiktorsson and a newly proposed algorithm due to Mrongowius and Rößler are considered. To put recent advances into context, we analyse the four Fourier-based algorithms in a unified framework to highlight differences and similarities in their derivation. A comparison of theoretical properties is complemented by a numerical simulation that reveals the order of convergence for each algorithm. Further, concrete instructions for the choice of the optimal algorithm and parameters for the simulation of solutions for stochastic (partial) differential equations are given. Additionally, we provide advice for an efficient implementation of the considered algorithms and incorporated these insights into an open source toolbox that is freely available for both Julia and Matlab programming languages. The performance of this toolbox is analysed by comparing it to some existing implementations, where we observe a significant speed-up.

MSC:

65-XX Numerical analysis
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aburn, M.: sdeint. Version 0.2.2. https://github.com/mattja/sdeint (2021)
[2] Åkerlindh, C.: SDEModels.jl. Version 0.2.0. https://github.com/Godisemo/SDEModels.jl (2019)
[3] Ansmann, G.: Efficiently and easily integrating differential equations with JiTCODE, JiTCDDE, and JiTCSDE. In: Chaos: An interdisciplinary journal of nonlinear science vol. 28.4, pp. 043116. doi:10.1063/1.5019320 (2018)
[4] Avramidis, E., Lalik, M., Akman. O.E.: SODECL: an open-source library for calculating multiple orbits of a system of stochastic differential equations in parallel. In: ACM transactions on mathematical software vol. 46.3, pp. 1-21. doi:10.1145/3385076 (2020)
[5] Bezanson, J., et al: Julia: A fresh approach to numerical computing. In: SIAM Review vol. 59.1, pp. 65-98. doi:10.1137/141000671 (2017)
[6] Brouste, A., et al.: The YUIMA Project: a computational framework for simulation and inference of stochastic differential equations. In: Journal of statistical software vol. 57.4. doi:10.18637/jss.v057.i04 (2014)
[7] Clark, J.M.C, Cameron, R.J: The maximum rate of convergence of discrete approximations for stochastic differential equations. In: Stochastic differential systems filtering and control. Lecture notes in control and information sciences. Springer, pp. 162-171. doi:10.1007/BFb0004007 (1980)
[8] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions. Second edition. Vol. 152. Encyclopedia of Mathematics and its Applications, pp. xviii+ 493 (2014), Cambridge: Cambridge University Press, Cambridge
[9] Datseris, G, et al.: DrWatson: the perfect sidekick for your scientific inquiries. In: Journal of open source software vol 5.54, pp. 2673. doi:10.21105/joss.02673 (2020)
[10] Davie, A: KMT theory applied to approximations of SDE. In: Stochastic analysis and applications 2014. In honour of Terry Lyons. Selected articles based on the presentations at the conference, Oxford, UK, September 23-27, 2013. Cham: Springer, pp. 185-201. doi:10.1007/978-3-319-11292-3_7 (2014)
[11] Dickinson, A.S.: Optimal approximation of the second iterated integral of Brownian motion. In: Stoch. Anal. Appl. vol. 25.5, pp. 1109-1128. doi:10.1080/07362990701540592 (2007)
[12] Flint, G., Lyons, T.: Pathwise approximation of SDEs by coupling piecewise abelian rough paths. In: arXiv:1505.01298 (2015)
[13] Foster, J., Habermann, K.: Brownian bridge expansions for Lévy area approximations and particular values of the Riemann zeta function. In: Combinatorics, Probability and Computing. doi:10.1017/S096354832200030X (2022)
[14] Gaines, J.G., Lyons, T.J.: Random generation of stochastic area integrals. In: SIAM Journal on applied mathematics vol. 54.4, pp. 1132-1146. doi:10.1137/S0036139992235706 (1994)
[15] Gevorkyan, M.N., et al.: Stochastic Runge-Kutta software package for stochastic differential equations. In: Dependability engineering and complex systems. Springer pp. 169-179. doi:10.1007/978-3-319-39639-2_15 (2016)
[16] Gevorkyan, M.N., et al.: Issues in the software implementation of stochastic numerical Runge-Kutta. In: Developments in language theory. Springer pp. 532-546. doi:10.1007/978-3-319-99447-5_46 (2018)
[17] Gilsing, H., Shardlow, T.: SDELab: A package for solving stochastic differential equations in MATLAB. In: Journal of computational and applied mathematics vol. 205.2, pp. 1002-1018. doi:10.1016/j.cam.2006.05.037 (2007)
[18] Guidoum, A.C., Boukhetala, K.: Performing parallel Monte Carlo and moment equations methods for Itô and Stratonovich stochastic differential systems: R Package Sim.DiffProc. In: Journal of statistical software vol. 96.2. doi:10.18637/jss.v096.i02 (2020)
[19] von Hallern, C., Rößler, A.: A derivative-free Milstein type approximation method for SPDEs covering the Non-Commutative Noise case. To appear in: Stoch. PDE: Anal. Comp., doi:10.1007/s40072-022-00274-6 (2022)
[20] von Hallern, C., Rößler, A.: An analysis of the Milstein scheme for SPDEs without a commutative noise condition. In: Monte Carlo and quasi-Monte Carlo methods. MCQMC 2018. Proceedings of the 13th international conference on Monte Carlo and quasi-Monte Carlo methods in scientific computing, Rennes, France, July 1-6, 2018. Cham: Springer, pp. 503-521. doi:10.1007/978-3-030-43465-6_25 (2020)
[21] Henderson, H.V., Searle, S.R.: The vec-permutation matrix, the vec operator and Kronecker products: a review. In: Linear and Multilinear Algebra vol. 9.4, pp. 271-288. doi:10.1080/03081088108817379 (1981)
[22] Horchler, A.D: SDETools. Version 1.2. https://github.com/horchler/SDETools(2013)
[23] Iacus, SM, Simulation and Inference For Stochastic Differential Equations (2008), New York: Springer, New York
[24] Iacus, S.M., Yoshida, N.: Simulation and Inference for Stochastic Processes with YUIMA, Springer International Publishing. doi:10.1007/978-3-319-55569-0 (2018)
[25] Janicki, A., Izydorczyk, A., Gradalski. P.: Computer simulation of stochastic models with SDE-Solver software package. In: Computational science - ICCS 2003. international conference, Melbourne, Australia and St. Petersburg, Russia, June 2-4, 2003. Proceedings, Part I. Berlin: Springer, pp. 361-370. doi:10.1007/3-540-44860-8_37 (2003)
[26] Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, Springer-Verlag. doi:10.1007/978-1-4612-0949-2 (1991)
[27] Kastner, F., Rößler, A.: LevyArea.jl. doi:10.5281/zenodo.5883748. https://github.com/stochastics-uni-luebeck/LevyArea.jl (2022)
[28] Kastner, F., Rößler, A.: LevyArea.m. 2022. doi:10.5281/zenodo.5883929. https://github.com/stochastics-uni-luebeck/LevyArea.m
[29] Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. Second corrected printing. vol. 23. Applications of Mathematics. Springer, Berlin, pp. xxxvi+ 632. doi:10.1007/978-3-662-12616-5 (1995)
[30] Kloeden, P.E., Platen, E, Wright, I.W: The approximation of multiple stochastic integrals. In: Stoch. Anal. Appl. vol. 10.4, pp. 431-441. doi:10.1080/07362999208809281 (1992)
[31] Kuznetsov, D.F.: A comparative analysis of efficiency of using the Legendre polynomials and trigonometric functions for the numerical solution of Ito stochastic differential equations. In: Computational mathematics and mathematical physics vol. 59.8, pp. 1236-1250. doi:10.1134/s0965542519080116 (2019)
[32] Kuznetsov, D.F.: Development and application of the fourier method for the numerical solution of Ito stochastic differential equations. In: Computational Mathematics and Mathematical Physics vol. 58.7, pp. 1058-1070. doi:10.1134/s0965542518070096 (2018)
[33] Leonhard, C., Rößler, A.: Enhancing the order of the Milstein scheme for stochastic partial differential equations with commutative noise. In: SIAM J. Numer. Anal. vol. 56.4, pp. 2585-2622. doi:10.1137/16M1094087 (2018)
[34] Leonhard, C., Rößler, A.: Iterated stochastic integrals in infinite dimensions: approximation and error estimates. In: Stoch. PDE: Anal. Comp., vol. 7.2, pp. 209-239. doi:10.1007/s40072-018-0126-9 (2019)
[35] Lévy, P.: Wieners random function, and other Laplacian random functions. In: Proceedings of the Second Berkeley symposium on mathematical statistics and probability, 1950. University of California Press, Berkeley and Los Angeles, pp. 171-187 (1951)
[36] Li, X.: torchsde. Version 0.2.4. https://github.com/google-research/torchsde (2021)
[37] Liske, H., Platen, E., Wagner, W.: About mixed multiple Wiener integrals. Prepr., Akad. Wiss. DDR, Inst. Math. P-MATH-23/82, vol. 17 (1982)
[38] Magnus, J.R, Neudecker, H: The commutation matrix: some properties and applications. In: The Annals of Statistics, vol. 7.2, pp. 381-394. doi:10.1214/aos/1176344621 (1979)
[39] Malham, S.J.A, Wiese, A.: Efficient almost-exact Lévy area sampling. In: Statistics & Probability Letters vol. 88, pp. 50-55. doi:10.1016/j.spl.2014.01.022 (2014)
[40] Milstein, GN, Numerical Integration of Stochastic Differential Equations. vol. 313. Mathematics and its Applications. Translated and Revised from the Russian 1988 Original, pp. viii+ 169 (1995), Dordrecht: Kluwer Academic Publishers, Dordrecht
[41] Mrongowius, J., Rößler, A.: On the approximation and simulation of iterated stochastic integrals and the corresponding Lévy areas in terms of a multidimensional Brownian motion. In: Stoch. Anal. Appl., vol. 40.3, p. 397-425. doi:10.1080/07362994.2021.1922291 (2022)
[42] Neuenkirch, A., Tindel, S., Unterberger, J.: Discretizing the fractional Lévy area. In: Stochastic Processes and their Applications vol. 120.2, pp. 223-254. doi:10.1016/j.spa.2009.10.007 (2010)
[43] Neuenkirch, A., Shalaiko, T.: The maximum rate of convergence for the approximation of the fractional Lévy area at a single point. In: Journal of Complexity vol. 33, pp. 107-117. doi:10.1016/j.jco.2015.09.008 (2016)
[44] Picchini, U.: SDE Toolbox. Version 1.4.1. http://sdetoolbox.sourceforge.net (2017)
[45] Prévôt, C.; Röckner, M., A Concise Course on Stochastic Partial Differential Equations. vol. 1905 Lecture Notes in Mathematics, pp. vi+ 144 (2007), Berlin: Springer, Berlin
[46] Rößler, A.: Runge-Kutta methods for the strong approximation of solutions of stochastic differential equations. In: SIAM J. Numer. Anal. vol. 48.3, pp. 922-952. doi:10.1137/09076636X (2010)
[47] Rydén, T., Wiktorsson, M.: On the simulation of iterated Itô integrals. In: Stochastic Process. Appl. vol. 91.1, pp. 151-168. doi:10.1016/S0304-4149(00)00053-3 (2001)
[48] Schauer, M.: Bridge.jl. Version 0.11.6. https://github.com/mschauer/Bridge.jl (2021)
[49] SciML: StochasticDiffEq.jl. Version 6.37.1. https://github.com/SciML/StochasticDiffEq.jl (2021)
[50] Shardlow, T.: SDELab2. Version 1.0. https://github.com/tonyshardlow/SDELAB2(2016)
[51] Stump, D.M., Hill, J.M.: On an infinite integral arising in the numerical integration of stochastic differential equations. In: Proceedings of the Royal society of London. Series A. mathematical, physical and engineering sciences vol. 461.2054, pp. 397-413. doi:10.1098/rspa.2004.1379 (2005)
[52] The MathWorks Inc.: Financial toolbox. Natick, Massachusetts, United States. https://www.mathworks.com/help/finance/ (2021)
[53] Wiktorsson, M.: Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions. In: Ann. Appl. Probab. vol. 11.2, pp. 470-487. doi:10.1214/aoap/1015345301 (2001)
[54] Wolfram Research: ItoProcess. Version 12.2.0. https://reference.wolfram.com/language/ref/ItoProcess.html (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.