×

zbMATH — the first resource for mathematics

On a ring structure related to annihilators. (English) Zbl 1382.16014
MSC:
16N40 Nil and nilpotent radicals, sets, ideals, associative rings
16P99 Chain conditions, growth conditions, and other forms of finiteness for associative rings and algebras
16S50 Endomorphism rings; matrix rings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amitsur, S. A., A general theory of radicals III, Amer. J. Math., 76, 126-136, (1954) · Zbl 0055.02701
[2] Beachy, J. A.; Blair, W. D., Rings whose faithful left ideals are cofaithful, Pacific J. Math., 58, 1-13, (1975) · Zbl 0309.16004
[3] Camillo, V.; Nielsen, P. P., Mccoy rings and zero-divisors, J. Pure Appl. Algebra, 212, 599-615, (2008) · Zbl 1162.16021
[4] Cohn, P. M., Reversible rings, Bull. Lond. Math. Soc., 31, 641-648, (1999) · Zbl 1021.16019
[5] Dorroh, J. L., Concerning adjunctins to algebras, Bull. Amer. Math. Soc., 38, 85-88, (1932) · JFM 58.0137.02
[6] Faith, C., Rings with zero intersection property on annihilators: zip rings, Publ. Mat., 33, 329-332, (1998) · Zbl 0702.16015
[7] Goodearl, K. R., Von Neumann Regular Rings, (1979), Pitman, London
[8] Huh, C.; Kim, H. K.; Lee, Y., P.p. rings and generalized p.p. rings, J. Pure Appl. Algebra, 167, 37-52, (2002)
[9] Huh, C.; Kim, N. K.; Lee, Y., Examples of strongly \(\pi\)-regular rings, J. Pure Appl. Algebra, 189, 195-210, (2004) · Zbl 1059.16007
[10] Huh, C.; Lee, Y.; Somktunowicz, A., Armendariz rings and semicommutative rings, Comm. Algebra, 30, 751-761, (2002) · Zbl 1023.16005
[11] Hwang, S. U.; Jeon, Y. C.; Lee, Y., Structure and topological conditions of NI rings, J. Algebra, 302, 186-199, (2006) · Zbl 1104.16015
[12] Hwang, S. U.; Kim, N. K.; Lee, Y., On rings whose right annihilators are bounded, Glasgow Math. J., 51, 539-559, (2009) · Zbl 1198.16001
[13] Jacobson, N., Some remarks on one-sided inverses, Proc. Amer. Math. Soc., 1, 352-355, (1950) · Zbl 0037.15901
[14] Jeon, Y. C.; Kim, H. K.; Lee, Y.; Yoon, J. S., On weak Armendariz rings, Bull. Korean Math. Soc., 46, 135-146, (2009) · Zbl 1180.16018
[15] Jeon, Y. C.; Lee, Y.; Ryu, S. J., A structure on coefficients of nilpotent polynomials, J. Korean Math. Soc., 47, 719-733, (2010) · Zbl 1204.16016
[16] Kaplansky, I., Fields and rings, (1969), The University of Chicago Press, Chicago
[17] Kerr, J. W., The power series ring over an ore domain need not be ore, J. Algebra, 75, 175-177, (1982) · Zbl 0486.16003
[18] Lambek, J., Lectures on Rings and Modules, (1966), Blaisdell Publishing Company, Waltham · Zbl 0143.26403
[19] Lei, Z.; Chen, J.; Ying, Z., A question on mccoy rings, Bull. Aust. Math. Soc., 76, 137-141, (2007) · Zbl 1127.16027
[20] Nielsen, P. P., Semi-commutativity and the mccoy condition, J. Algebra, 298, 134-141, (2006) · Zbl 1110.16036
[21] Zelmanowitz, J. M., The finite intersection property on annihilator right ideals, Proc. Amer. Math. Soc., 57, 213-216, (1976) · Zbl 0333.16014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.