×

zbMATH — the first resource for mathematics

Structure of insertion property by powers. (English) Zbl 1414.16031
MSC:
16U80 Generalizations of commutativity (associative rings and algebras)
16N40 Nil and nilpotent radicals, sets, ideals, associative rings
16S15 Finite generation, finite presentability, normal forms (diamond lemma, term-rewriting)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, D. D.; Camillo, V., Semigroups and rings whose zero products commute, Comm. Algebra, 27, 2847-2852, (1999) · Zbl 0929.16032
[2] Antoine, R., Nilpotent elements and Armendariz rings, J. Algebra, 319, 3128-3140, (2008) · Zbl 1157.16007
[3] Armendariz, E. P., A note on extensions of Baer and P. P.-rings, J. Austral. Math. Soc., 18, 470-473, (1974) · Zbl 0292.16009
[4] Bell, H. E., Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc., 2, 363-368, (1970) · Zbl 0191.02902
[5] Birkenmeier, G. F.; Heatherly, H. E.; Lee, E. K.; Fong, Y., Proceedings of Near-Rings and Near-Fields, Completely prime ideals and radicals in near-rings, 63-73, (1995), Kluwer, New Brunswick, Canada · Zbl 0839.16040
[6] Birkenmeier, G. F.; Kim, J. Y.; Park, J. K., A connection between weak regularity and the simplicity of prime factor rings, Proc. Amer. Math. Soc., 122, 53-58, (1994) · Zbl 0814.16001
[7] Camillo, V.; Kwan, T. K.; Lee, Y., Ideal-symmetric and semiprime rings, Comm. Algebra, 41, 4504-4519, (2013) · Zbl 1281.16043
[8] Dorroh, J. L., Concerning adjunctins to algebras, Bull. Amer. Math. Soc., 38, 85-88, (1932) · JFM 58.0137.02
[9] de Narbonne, L. M., Anneaux semi-commutatifs et unis riels anneaux dont LES id aux principaux sont idempotents, Proc. 106th National Congress of Learned Societies (Perpignan, \(1 9 8 1)\), 71-73, (1982)
[10] Faith, C., Algebra I: Rings, Modules, and Categories, (1973), Springer-Verlag, Berlin, Heidelberg · Zbl 0266.16001
[11] Feller, E. H., Properties of primary noncommutative rings, Trans. Amer. Math. Soc., 89, 79-91, (1958) · Zbl 0095.25703
[12] Golod, E. S., On nil-algebras and finitely approximable \(p\)-groups, Izv. Akad. Nauk SSSR Ser. Mat., 28, 273-276, (1964)
[13] Golod, E. S.; Shafarevich, I. R., On the class field tower, Izv. Akad. Nauk SSSR Ser. Mat., 28, 261-272, (1964) · Zbl 0136.02602
[14] Goodearl, K. R., Von Neumann Regular Rings, (1979), Pitman, London
[15] Goodearl, K. R.; Warfield, R. B. JR., An Introduction to Noncommutative Noetherian Rings, (1989), Cambridge University Press, Cambridge · Zbl 0679.16001
[16] Herstein, I., Topics in Ring Theory, (1969), University of Chicago Press, Chicago · Zbl 0232.16001
[17] Huh, C.; Kim, H. K.; Lee, Y., P.p. rings and generalized p.p. rings, J. Pure Appl. Algebra, 167, 37-52, (2002)
[18] Huh, C.; Kim, N. K.; Lee, Y., Examples of strongly \(\pi\)-regular rings, J. Pure Appl. Algebra, 189, 195-210, (2004) · Zbl 1059.16007
[19] Huh, C.; Lee, Y.; Smoktunowicz, A., Armendariz rings and semicommutative ring, Comm. Algebra, 30, 751-761, (2002) · Zbl 1023.16005
[20] Hwang, S. U.; Jeon, Y. C.; Lee, Y., Structure and topological conditions of NI rings, J. Algebra, 302, 186-199, (2006) · Zbl 1104.16015
[21] Jeon, Y. C.; Kim, H. K.; Lee, Y.; Yoon, J. S., On weak Armendariz rings, Bull. Korean Math. Soc., 46, 135-146, (2009) · Zbl 1180.16018
[22] Kim, N. K.; Lee, Y., Armendariz rings and reduced rings, J. Algebra, 223, 477-488, (2000) · Zbl 0957.16018
[23] Kim, N. K.; Lee, Y., Extensions of reversible rings, J. Pure Appl. Algebra, 185, 207-223, (2003) · Zbl 1040.16021
[24] Kim, N. K.; Lee, Y., Structure of idempotents in rings without identity, J. Korean Math. Soc., 51, 751-771, (2014) · Zbl 1312.16036
[25] Lambek, J., Lectures on Rings and Modules, (1966), Blaisdell Publishing Company, Waltham · Zbl 0143.26403
[26] Lambek, J., On the representation of modules by sheaves of factor modules, Canad. Math. Bull., 14, 359-368, (1971) · Zbl 0217.34005
[27] McCoy, N. H., Generalized regular rings, Bull. Am. Math. Soc., 45, 175-178, (1939) · JFM 65.0088.05
[28] Nielsen, P. P., Semi-commutativity and the mccoy condition, J. Algebra, 298, 134-141, (2006) · Zbl 1110.16036
[29] Rege, M. B.; Chhawchharia, S., Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., 73, 14-17, (1997) · Zbl 0960.16038
[30] Shin, G., Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc., 184, 43-60, (1973) · Zbl 0283.16021
[31] Xue, W., Structure of minimal noncommutative duo rings and minimal strongly bounded non-duo rings, Comm. Algebra, 20, 2777-2788, (1992) · Zbl 0789.16024
[32] Xu, L.; Xue, W., Structure of minimal non-commutative zero-insertive rings, Math. J. Okayama Univ., 40, 69-76, (1998) · Zbl 1029.16014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.