×

Optical dromions for complex Ginzburg Landau model with nonlinear media. (English) Zbl 1524.35169

Summary: This manuscript studies the optical dromions with beta derivative (BD) applied to the Complex Ginzburg Landau equation (CGLE) with Kerr law, parabolic law, cubic quintic septic law and quadratic cubic law. We obtain bright dromians by using the sine-cosine method (SCM). We will also obtain domain walls with the assistance of Bernoulli equation approach (BEA). Constraint conditions are also listed.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J10 Schrödinger operator, Schrödinger equation
35K05 Heat equation
35L05 Wave equation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Liu, W.; Zhang, Y.; Wazwaz, A. M.; Zhou, Q., Analytic study on triple-S, triple-triangle structure interactions for solitons in inhomogeneous multi-mode fiber, Applied Mathematics and Computation, 361, 325-331 (2019) · Zbl 1428.81079 · doi:10.1016/j.amc.2019.05.046
[2] Guan, X.; Liu, W.; Zhou, Q.; Biswas, A., Some lump solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Applied Mathematics and Computation, 366, 124757 (2020) · Zbl 1433.35338 · doi:10.1016/j.amc.2019.124757
[3] Fan, X.; Qu, T.; Huang, S.; Chen, X.; Cao, M.; Zhou, Q.; Liu, W., Analytic study on the influences of higher-order effects on optical solitons in fiber laser, Optik, 186, 326-331 (2019) · doi:10.1016/j.ijleo.2019.04.102
[4] Liu, S.; Zhou, Q.; Biswas, A.; Liu, W., Phase-shift controlling of three solitons in dispersion-decreasing fibers, Nonlinear Dynamics, 98, 1, 395-401 (2019) · Zbl 1430.78006 · doi:10.1007/s11071-019-05200-5
[5] Yan, Y.; Liu, W., Stable transmission of solitons in the complex cubic-quintic Ginzburg-Landau equation with nonlinear gain and higher-order effects, Applied Mathematics Letters, 98, 171-176 (2019) · Zbl 1426.35068 · doi:10.1016/j.aml.2019.06.008
[6] Shang, Y., Analytical solution for an in-host viral infection model with timeinhomogeneous rates, Acta Physica Polonica B, 46, 1567-1577 (2015) · Zbl 1371.92128 · doi:10.5506/APhysPolB.46.1567
[7] Shang, Y., Lie algebraic discussion for affinity based information diffusion in social networks, Open Phys, 15, 705-711 (2017) · doi:10.1515/phys-2017-0083
[8] Shang, Y., Deffuant model of opinion formation in one-dimensional multiplex networks, J Phys A: Math Theor, 48, 395101 (2015) · Zbl 1332.91097 · doi:10.1088/1751-8113/48/39/395101
[9] Seadawy, A. R., Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves, Eur Phys J Plus, 132, 29 (2017) · doi:10.1140/epjp/i2017-11313-4
[10] Seadawy, A. R., Fractional solitary wave solutions of the nonlinear higher-order extended KdV equation in a stratified shear flow: Part I, Comp Math Appl, 70, 4, 345-352 (2015) · Zbl 1443.35140 · doi:10.1016/j.camwa.2015.04.015
[11] Seadawy, A. R., Nonlinear wave solutions of the three-dimensional Zakharov-Kuznetsov-Burgers equation in dusty plasma, Physica A, 439, 124-131 (2015) · Zbl 1400.82272 · doi:10.1016/j.physa.2015.07.025
[12] Seadawy, A. R., Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas, Phys Plasmas, 21, 05210 (2014) · doi:10.1063/1.4875987
[13] Seadawy, A. R., Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ionacoustic waves in a plasma, Comp Math Appl, 67, 1, 172-180 (2014) · Zbl 1381.82023 · doi:10.1016/j.camwa.2013.11.001
[14] Seadawy, A.; El-Rashidy, K., Dispersive Solitary wave solutions of Kadomtsev-Petviashivili and modified Kadomtsev-Petviashivili dynamical equations in unmagnetized dust plasma, Results in Physics, 8, 1216-1222 (2018) · doi:10.1016/j.rinp.2018.01.053
[15] Seadawy, A. R.; Alamri, S. Z., Mathematical methods via the nonlinear two-dimensional water waves of Olver dynamical equation and its exact solitary wave solutions, Results in Physics, 8, 286-291 (2018) · doi:10.1016/j.rinp.2017.12.008
[16] Seadawy, A. R., Solitary wave solutions of tow-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in a dust acoustic plasmas, The Pramana-Journal of Physics, 89, 49 (2017) · doi:10.1007/s12043-017-1446-4
[17] Khater, A. H.; K Callebaut, D.; Helal, M. A.; Seadawy, A. R., Variational Method for the Nonlinear-Dynamics of an Elliptic Magnetic Stagnation Line, The European Physical Journal D, 39, 237-245 (2006) · doi:10.1140/epjd/e2006-00093-3
[18] Helal, M. A.; Seadawy, A. R., Variational method for the derivative nonlinear Schrodinger equation with computational applications, Physica Scripta, 80, 350-360 (2009) · Zbl 1179.35311 · doi:10.1088/0031-8949/80/03/035004
[19] Khater, A. H.; Callebaut, D. K.; Seadawy, A. R., General soliton solutions of an n-dimensional Complex Ginzburg-Landau equation, Physica Scripta, 62, 353-357 (2000) · doi:10.1238/Physica.Regular.062a00353
[20] Khater, A. H.; Callebaut, D. K.; Helal, M. A.; Seadawy, A. R., Variational Method for the Nonlinear Dynamics of an Elliptic Magnetic Stagnation Line, The European Physical Journal D, 39, 237-245 (2006) · doi:10.1140/epjd/e2006-00093-3
[21] Biswas, A.; Ekici, M.; Sonmezoglu, A.; Arshed, S.; Belic, M., Optical soliton perturbation with full nonlinearity by extended trial function method, Optical and Quantum Electronics, 50, 449 (2018) · doi:10.1007/s11082-018-1701-z
[22] Abdullah; Seadawy, A. R.; Wang, J., Mathematical methods and solitary wave solutions of three-dimensional Zakharov-Kuznetsov-Burgers equation in dusty plasma and its applications, Results in Physics, 7, 4269-4277 (2017) · doi:10.1016/j.rinp.2017.10.045
[23] Ekici, M.; Mirzazadeh, M.; Sonmezoglu, A.; Ullah, M. Z.; Zhou, Q.; Triki, H.; P Moshokoa, S.; Biswas, A., Optical solitons with anti-cubic nonlinearity by extended trial equation method, Optik, 136, 368-373 (2017) · doi:10.1016/j.ijleo.2017.02.004
[24] Seadawy, A. R., Two-dimensional interaction of a shear flow with a free surface in a stratified fluid and its a solitary wave solutions via mathematical methods, European Physical Journal Plus, 132, 518 (2017) · doi:10.1140/epjp/i2017-11755-6
[25] Zhou, Q.; Zhu, Q., Optical solitons in medium with parabolic law nonlinearity and higher order dispersion, Waves Random Complex Medium, 25, 1, 52-59 (2015) · Zbl 1375.35076 · doi:10.1080/17455030.2014.956847
[26] Zhao, X. J.; Guo, R.; Hao, H. Q., N-fold Darboux transformation and discrete soliton solutions for the discrete Hirota equation, Appl Math Lett, 75, 114-120 (2018) · Zbl 1377.39013 · doi:10.1016/j.aml.2017.07.002
[27] Guner, O.; Bekir, A., Bright and dark soliton solutions for some nonlinear fractional differential equations, Chin Phys B, 25, 030203 (2016) · doi:10.1088/1674-1056/25/3/030203
[28] Yang, C.; Liu, W.; Zhou, Q.; Mihalache, D.; Malomed, B. A., One-soliton shaping and two-soliton interaction in the fifth-order variable-coefficient nonlinear Schrødinger equation, Nonlinear Dynamics, 95, 1, 369-380 (2019) · doi:10.1007/s11071-018-4569-3
[29] Seadawy, A. R.; El-Rashidy, K., Nonlinear Rayleigh-Taylor instability of the cylindrical flow with mass and heat transfer, The Pramana-Journal of Physics, 87, 20 (2016) · doi:10.1007/s12043-016-1222-x
[30] Seadawy, A. R., Solitary wave solutions of tow-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in a dust acoustic plasmas, The Pramana-Journal of Physics, 89, 49 (2017) · doi:10.1007/s12043-017-1446-4
[31] Helal, M. A.; Seadawy, A. R., Benjamin-Feir-instability in nonlinear dispersive waves, Computers and Mathematics with Applications, 64, 11, 3557-3568 (2012) · Zbl 1268.35113 · doi:10.1016/j.camwa.2012.09.006
[32] Nawaz, B.; Ali, K.; Abbas, S. O.; Rizvi, S. T R.; Zhou, Q., Optical solitons for non-Kerr law nonlinear Schrodinger equation with third and fourth order dispersions, Chinese Journal of Physics, 60, 133-140 (2019) · doi:10.1016/j.cjph.2019.05.014
[33] Yusuf, A.; Inc, M.; Aliyu, A. I.; Baleanu, D., Optical Solitons for Complex Ginzburg-Landau Model with Beta Derivative in Nonlinear Optics, Journal of Advanced Physics, 7, 2, 224-229 (2018) · doi:10.1166/jap.2018.1410
[34] Podlubny, I., Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (1998), New York: Academic Press, New York
[35] Oldham, K. B.; Spanier, J., The Fractional Calculus (1974), New York: Academic Press, New York · Zbl 0292.26011
[36] J Singh, D Kumar, M Al Qurashi, D Baleanu. A new fractional model for giving up smoking dynamics, Adv Differ Equ, 2017, 88, DOI: doi:10.1186/s13662-017-1139-9. · Zbl 1422.34062
[37] Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M., A new definition of fractional derivative, J Compute Appl Math, 264, 65-70 (2014) · Zbl 1297.26013 · doi:10.1016/j.cam.2014.01.002
[38] A Atangana, D baleanu, A Alsaedi. Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal, Open Phys, 2016, 14(1), DOI: doi:10.1515/phys-2016-0010.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.