×

Approximate analytical solutions of space-fractional telegraph equations by Sumudu adomian decomposition method. (English) Zbl 1407.35213

Summary: The main goal in this work is to establish a new and efficient analytical scheme for space fractional telegraph equation (FTE) by means of fractional Sumudu decomposition method (SDM). The fractional SDM gives us an approximate convergent series solution. The stability of the analytical scheme is also studied. The approximate solutions obtained by SDM show that the approach is easy to implement and computationally very much attractive. Further, some numerical examples are presented to illustrate the accuracy and stability for linear and nonlinear cases.

MSC:

35R11 Fractional partial differential equations
35A22 Transform methods (e.g., integral transforms) applied to PDEs
33E12 Mittag-Leffler functions and generalizations
PDFBibTeX XMLCite
Full Text: Link

References:

[1] Atangana, A. (2015). On the stability and convergence of the time-fractional variable order telegraph equation. J. Comput. Phys., Vol. 293, pp.104-114. · Zbl 1349.65263
[2] Baleanu, D., Fernandez, A. (2018).On some new properties of fractional derivatives with MittagLeffler kernel. Commun. Nonlinear Sci. Numer. Simul., Vol. 59, pp. 444-462. · Zbl 1510.34004
[3] Belgacem, F. B. M., Karaballi, A. A. (2006). Sumudu transform fundamental properties investigations and applications. J. Appl. Math. Stoch. Anal., Art. ID 91083, 23 pp. Exp {\it x}2 {\it t} 0.7 0.8 0.9 0.95 · Zbl 1115.44001
[4] AAM: Intern. J., Vol. 13, Issue 2 (December 2018) 801
[5] Chen, J., Liu, F. and Anh, V. (2008). Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl., Vol. 338 , No. 2, pp. 1364-1377. · Zbl 1138.35373
[6] Das, S., Vishal, K., Gupta, P. K. and Yildirim, A. (2011). An approximate analytical solution of timefractional telegraph equation. Appl. Math. Comput., Vol. 217, No. 18, 7405-7411. · Zbl 1216.65135
[7] Elwakil, A. S., Allagui, A., Freeborn, T. J. and Maundy, B. J. (2017). Further experimental evidence of the fractional-order energy equation in supercapacitors. International Journal of Electronics and Communications (AEÜ), Vol. 78, pp. 209-212.
[8] Ford, N. J., Rodrigues, M. M., Xiao, J. and Yan, Y. (2013). Numerical analysis of a two-parameter fractional telegraph equation. J. Comput. Appl. Math., Vol. 249, pp.95-106. · Zbl 1302.65187
[9] Golmankhaneh, A., Khatuni T., Porghoveh N. and Baleanu D. (2012). Comparison of iterative methods by solving nonlinear Sturm-Liouville, Burgers and Navier-Stokes equations. Central European Journal of Physics 10.4: 966-976.
[10] Grace, S.R., Graef, J.R. and Tunc, E. (2016). Asymptotic behavior of solutions of forced fractional differential equations, Electron. J. Qual. Theory Differ. Equation, 2016:71, 1-10. · Zbl 1389.34013
[11] Guner, O. , Bekir, A. (2017). The Exp-function method for solving nonlinear space-time fractional differential equations in mathematical physics. J. Assoc. Arab Univ. Basic Appl. Sci., Vol. 24 , pp. 277-282.
[12] Graef, J.R., Grace, S.R. and Tunc, E. (2017). Asymptotic behavior of solutions of nonlinear fractional differential equations with Caputo-type Hadamard derivatives. Fract. Calc. Appl. Anal., Vol. 20, No.1, 71-87. · Zbl 1359.34009
[13] Hesameddini E. and Asadollahifard E. (2015). Numerical solution of multi-order fractional differential equations via the Sinc-collocation method, Iran. J. Numer. Anal. Optim., 5(1) (2015) 37-48. · Zbl 1330.65105
[14] Hashemi, M. S., Baleanu, D. (2016). Numerical approximation of higher-order time-fractional telegraph equation by using a combination of a geometric approach and method of line. J. Comput. Phys., Vol. 316, pp.10-20. · Zbl 1349.65396
[15] Hosseini, V.R. , Chen, W. and Avazzadeh, Z. (2014). Numerical solution of fractional telegraph equation by using radial basis functions. Eng. Anal. Bound. Elem., Vol. 38, pp. 31-39. · Zbl 1287.65085
[16] Ionescu, C., Lopes, A., Copot, D., Machado, J. A. T. and Bates, J. H. T. (2017). The role of fractional calculus in modeling biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simul., Vol. 51 , pp.41-159. · Zbl 1467.92050
[17] Jiang, W., Lin, Y. (2011). Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space. Commun. Nonlinear Sci. Numer. Simul., Vol. 16, No. 9, pp. 3639-3645. · Zbl 1223.35112
[18] Jafarian, A., Ghaderi P. and Golmankhaneh A.K. (2013). Construction of soliton solution to the KadomtsevPetviashvili-II equation using homotopy analysis method. Rom. Rep. Phys 65.1: 76-83.
[19] Kilbas, A.A., Srivastava, H. M. and Trujillo, J. J. (2006). Theory and applications of fractional differential equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam. · Zbl 1092.45003
[20] Kareem R.S. (2014). Numerical methods for fractional differential equations, Int. J. Comput. Netw. Commun. Secur., 42(1):42-45.
[21] Loghmani G.B. and Javanmardi S. (2012). Numerical Methods for Sequential Fractional Differential Equations for Caputo Operator, Bull. Malays. Math. Sci. Soc., 35(2) (2012) 315-323. · Zbl 06029721
[22] Li X. (2012). Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method, Commun. Nonlinear Sci. Numer. Simul., 17(10):3934-3946. · Zbl 1250.65094
[23] Luo, X., Du, Q. (2013). An unconditionally stable fourth-order method for telegraph equation based on Hermite interpolation. Appl. Math. Comput., Vol. 219, No. 15, pp. 8237-8246. · Zbl 1288.65122
[24] Magin,R. L. (2006). Fractional Calculus in Bioengineering , Begell House.
[25] Miljković, N., Popović, N., Djordjević,O., Konstantinovic, L. and Šekara,T. B. (2017). ECG artifact cancellation in surface EMG signals by fractional order calculus application. Computer Methods
[26] 802 H. Khan et al. and Programs in Biomedicine, Vol. 140, pp. 259-264.
[27] Mohebbi, A., Abbaszadeh, M. and Dehghan,M. (2014). The meshless method of radial basis functions for the numerical solution of time fractional telegraph equation. Internat. J. Numer. Methods Heat Fluid Flow , Vol. 24, No. 8, 1636-1659. · Zbl 1357.65197
[28] Mollahasani, N., Moghadam, M. M. and Afrooz, K. (2016). A new treatment based on hybrid functions to the solution of telegraph equations of fractional order. Appl. Math. Model., Vol. 40, No. 4, pp. 2804-2814. · Zbl 1452.35243
[29] Morales-Delgado, V. F., Gómez-Aguilar, J. F. and Taneco-Hernandez, M. A. (2018) Analytical solutions of electrical circuits described by fractional conformable derivatives in Liouville-Caputo sense, AEU - International Journal of Electronics and Communications Vol.85 , pp. 108-117.
[30] Navickas, Z., Telksnys, T., Marcinkevicius, R. and Ragulskis, M. (2017). Operator-based approach for the construction of analytical soliton solutions to nonlinear fractional-order differential equations. Chaos Solitons Fractals, Vol. 104, pp. 625-634. · Zbl 1380.34018
[31] Pandey, R. K., Mishra,H. K. (2017). Numerical simulation for solution of space-time fractional telegraphs equations with local fractional derivatives via HAFSTM. New Astronomy., Vol. 57, pp. 82-93.
[32] Podlubny, I. (1999). Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA. · Zbl 0924.34008
[33] Povstenko, Y. (2012). Theories of thermal stresses based on space-time-fractional telegraph equations. Comput. Math. Appl., Vol. 64, No. 10, pp. 3321-3328. · Zbl 1268.74018
[34] Secer A., Alkan S., Akinlar M.A. and Bayram M. (2013). Sinc-Galerkin method for approximate solutions of fractional order boundary value problems, 2013(281), 14pp. · Zbl 1301.34011
[35] Soltan, A., Soliman, A. M. and Radwan, A. G. (2017). Fractional-order impedance transformation based on three port mutators. AEU - International Journal of Electronics and Communications, Vol. 81, pp. 12-22.
[36] Srivastava, V. K., Awasthi, M. K. and Kumar, S. (2014). Analytical approximations of two and three dimensional time-fractional telegraphic equation by reduced differential transform method. Egypt. J. Basic Appl. Sci., Vol. 1, No. 1, pp. 60-66.
[37] Shiralashetti S.C. and Deshi A.B. (2016). An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations, Nonlinear Dyn., 83:293-303.
[38] Tunc, E. and Tunc, O. (2016). On the oscillation of a class of damped fractional differential equations. Miskolc Math. Notes, 17(1), 647-656. · Zbl 1389.34250
[39] Tawfik, A.M., Fichtner, H., Schlickeiser, R. and Elhanbaly, A. (2018). Analytical solutions of the space-time fractional Telegraph and advection-diffusion equations. Phys. A, Vol. 491, pp. 810– 819. · Zbl 1514.35474
[40] Vastarouchas, C., Tsirimokou, G., Freeborn, T. J. and Psychalinos, C. (2017). Emulation of an electrical-analogue of a fractional-order human respiratory mechanical impedance model using OTA topologies.Int. J. Electron. Commun. (AEÜ), Vol. 78, pp. 201-208.
[41] Zhao, Z., Li, C. (2012). Fractional difference/finite element approximations for the time-space fractional telegraph equation. Appl. Math. Comput., Vol. 219, No. 6, pp. 2975-2988. · Zbl 1309.65101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.