×

A two-strain TB model with multiple latent stages. (English) Zbl 1352.92157

Summary: A two-strain tuberculosis (TB) transmission model incorporating antibiotic-generated TB resistant strains and long and variable waiting periods within the latently infected class is introduced. The mathematical analysis is carried out when the waiting periods are modeled via parametrically friendly gamma distributions, a reasonable alternative to the use of exponential distributed waiting periods or to integral equations involving “arbitrary” distributions. The model supports a globally-asymptotically stable disease-free equilibrium when the reproduction number is less than one and an endemic equilibriums, shown to be locally asymptotically stable, or l.a.s., whenever the basic reproduction number is greater than one. Conditions for the existence and maintenance of TB resistant strains are discussed. The possibility of exogenous re-infection is added and shown to be capable of supporting multiple equilibria; a situation that increases the challenges faced by public health experts. We show that exogenous re-infection may help established resilient communities of actively-TB infected individuals that cannot be eliminated using approaches based exclusively on the ability to bring the control reproductive number just below 1.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. P. Aparicio, Markers of disease evolution: The case of tuberculosis,, J Theor Biol, 215, 227 (2002) · doi:10.1006/jtbi.2001.2489
[2] J. P. Aparicio, Long-term dynamics and re-emergence of tuberculosis,, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, 125, 351 (2002) · Zbl 1021.92020 · doi:10.1007/978-1-4757-3667-0_20
[3] J. P. Aparicio, Transmission and dynamics of tuberculosis on generalized households,, J Theor Biol, 206, 327 (2000) · doi:10.1006/jtbi.2000.2129
[4] J. P. Aparicio, Mathematical modelling of tuberculosis epidemics,, Math Biosci Eng, 6, 209 (2009) · Zbl 1167.92019 · doi:10.3934/mbe.2009.6.209
[5] J. H. Bates, Phage type of tubercle bacilli isolated from patients with two or more sites of organ involvement,, Am Rev Respir Dis, 114, 353 (1976)
[6] B. R. Bloom, <em>Tuberculosis: Pathogenesis, Protection, and Control</em>,, ASM Press (1994)
[7] S. M. Blower, The intrinsic transmission dynamics of tuberculosis epidemics,, Nature Medicine, 1, 815 (1995) · doi:10.1038/nm0895-815
[8] F. Brauer, <em>Mathematical Models for Communicable Diseases</em>,, SIAM (2013) · Zbl 1353.92001
[9] C. Castillo-Chavez, Chalenges and opportunities in mathematical and theoretical biology and medicine: foreword to volume 2 (2013) of Biomath,, Biomath, 2 (2013) · doi:10.11145/j.biomath.2013.12.319
[10] C. Castillo-Chavez, To treat or not to treat: The case of tuberculosis,, J Math Biol, 35, 629 (1997) · Zbl 0895.92024 · doi:10.1007/s002850050069
[11] C. Castillo-Chavez, Mathematical models for the disease dynamics of tuberculosis,, Advances in Mathematical Population Dynamics - Molecules, 629 (1998) · Zbl 0928.92025
[12] C. Castillo-Chavez, Dynamical models of tuberculosis and their applications,, Math Biosci Eng, 1, 361 (2004) · Zbl 1060.92041 · doi:10.3934/mbe.2004.1.361
[13] C. Y. Chiang, Exogenous reinfection in tuberculosis,, Lancet Infect Dis, 5, 629 (2005) · doi:10.1016/S1473-3099(05)70240-1
[14] P. van den Driessche, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math Biosci, 180, 29 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[15] Z. Feng, A model for tuberculosis with exogenous reinfection,, Theor Popul Biol, 57, 235 (2000) · Zbl 0972.92016 · doi:10.1006/tpbi.2000.1451
[16] Z. Feng, On the role of variable latent periods in mathematical models for tuberculosis,, Journal of Dynamics and Differential Equations, 13, 425 (2001) · Zbl 1012.34045 · doi:10.1023/A:1016688209771
[17] Z. Feng, Epidemiological models with non-exponentially distributed disease stages and applications to disease control,, Bulletin of Mathematical Biology, 69, 1511 (2007) · Zbl 1298.92099 · doi:10.1007/s11538-006-9174-9
[18] <em>Antibiotic-resistant Diseases Pose ’Apocalyptic’ Threat, Top Expert Says</em>,, 2013. Available from: <a href=
[19] <em>Guidelines on the Management of Latent Tuberculosis Infection</em>,, 2015. Available from: <a href=
[20] H. M. Hethcote, Qualitative analysis for communicable disease models,, Math Biosc, 28, 335 (1976) · Zbl 0326.92017 · doi:10.1016/0025-5564(76)90132-2
[21] H. M. Hethcote, The Mathematics of infectious diseases,, SIAM Rev, 42, 599 (2000) · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[22] J. M. Hyman, An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations,, Mathematical Biosciences, 167, 65 (2000) · Zbl 0962.92033 · doi:10.1016/S0025-5564(00)00025-0
[23] E. Ibargüen-Mondragón, On the interactions of sensitive and resistant Mycobacterium tuberculosis to antibiotics,, Math Biosc, 246, 84 (2013) · Zbl 1281.92030 · doi:10.1016/j.mbs.2013.08.005
[24] V. Lakshmikantham, <em>Stability Analysis of Nonlinear Systems</em>,, Marcel Dekker Inc, 41 (1989) · Zbl 0676.34003
[25] M. L. Lambert, Recurrence in tuberculosis: Relapse or reinfection?,, Lancet Infect Dis, 3, 282 (2003) · doi:10.1016/S1473-3099(03)00607-8
[26] E. Nardell, Exogenous reinfection with tuberculosis in a shelter for the homeless,, N Engl J Med, 315, 1570 (1986) · doi:10.1056/NEJM198612183152502
[27] E. Oldfield, Resistance-resistant antibiotics,, Trends in Pharmacological Sciences, 35, 664 (2014) · doi:10.1016/j.tips.2014.10.007
[28] T. C. Porco, Quantifying the intrinsic transmission dynamics of tuberculosis,, Theoretical Population Biology, 54, 117 (1998) · Zbl 0921.92018 · doi:10.1006/tpbi.1998.1366
[29] J. W. Raleigh, Exogenous reinfection with mycobacterium tuberculosis confirmed by phage typing,, Am Rev Respir Dis, 108, 639 (1973)
[30] J. W. Raleigh, Evidence for infection by two distinct strains of mycobacterium tuberculosis in pulmonary tuberculosis: Report of 9 cases,, Am Rev Respir Dis, 112, 497 (1975)
[31] M. Raviglione, <em>Drug-Resistant TB Surveillance and Response</em>, Global Tuberculosis Report 2014,, 2014. Available from: <a href=
[32] L. W. Roeger, Modeling TB and HIV co-infections,, Math Biosci Eng, 6, 815 (2009) · Zbl 1194.92054 · doi:10.3934/mbe.2009.6.815
[33] G. Shen, Recurrent tuberculosis and exogenous reinfection, Shanghai, China,, Emerging Infectious Disease, 12, 1176 (2006) · doi:10.3201/eid1211.051207
[34] P. M. Small, Exogenous reinfection with multidrug-resistant mycobacterium tuberculosis in patients wit advanced HIV infection,, N Engl J Med, 328, 1137 (1993)
[35] H. L. Smith, <em>Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems</em>,, American Mathematical Society (1995) · Zbl 0821.34003
[36] B. Song, <em>Dynamical Epidemic Models and Their Applications</em>,, Thesis (Ph.D.)-Cornell University (2002)
[37] B. Song, Tuberculosis models with fast and slow dynamics: The role of close and casual contacts,, Mathematical Biosciences, 180, 187 (2002) · Zbl 1015.92025 · doi:10.1016/S0025-5564(02)00112-8
[38] B. Song, Global dynamics of tuberculosis models with density dependent demography,, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models Methods and Theory (eds. C. Castillo-Chavez, 126, 275 (2002) · Zbl 1022.92038 · doi:10.1007/978-1-4613-0065-6_16
[39] W. W. Stead, The pathogenesis of pulmonary tuberculosis among older persons,, Am Rev Respir Dis, 91, 811 (1965)
[40] T. C. Porco, Quantifying the intrinsic transmission dynamics of tuberculosis,, Theoretical Population Biology, 54, 117 (1998) · Zbl 0921.92018 · doi:10.1006/tpbi.1998.1366
[41] X. Wang, <em>Backward Bifurcation in a Mathematical Model for Tuberculosis with Loss of Immunity</em>,, Ph.D. Thesis (2005)
[42] X. Wang, On the dynamics of reinfection: The case of tuberculosis, BIOMAT 2009,, International Symposium on Mathematical and Computational Biology, 304 (2010) · doi:10.1142/9789814304900_0021
[43] <em>Global Tuberculosis Control: Who Report 2010</em>, 2010., Available from: <a href=
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.