×

zbMATH — the first resource for mathematics

Soft contribution to \(B\to \gamma\ell \nu_\ell\) and the \(B\)-meson distribution amplitude. (English) Zbl 1332.81234
Summary: The \(B\to \gamma\ell \nu_\ell\) decay at large energies of the photon receives a numerically important soft-overlap contribution which is formally of the next-to-leading order in the expansion in the inverse photon energy. We point out that this contribution can be calculated within the framework of heavy-quark expansion and soft-collinear effective theory, making use of dispersion relations and quark-hadron duality. The soft-overlap contribution is obtained in a full analogy with the similar contribution to the \(\gamma^\ast\gamma\to \pi\) transition form factor. This result strengthens the case for using the \(B\to \gamma\ell \nu_\ell\) decay to constrain the \(B\)-meson distribution amplitude and determine its most important parameter, the inverse moment \(\lambda_B\).
MSC:
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
81V25 Other elementary particle theory in quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Korchemsky, G. P.; Pirjol, D.; Yan, T.-M., Phys. Rev. D, 61, 114510, (2000)
[2] Descotes-Genon, S.; Sachrajda, C. T., Nucl. Phys. B, 650, 356, (2003)
[3] Lunghi, E.; Pirjol, D.; Wyler, D., Nucl. Phys. B, 649, 349, (2003)
[4] Bosch, S. W.; Hill, R. J.; Lange, B. O.; Neubert, M., Phys. Rev. D, 67, 094014, (2003)
[5] Grozin, A. G.; Neubert, M., Phys. Rev. D, 55, 272, (1997)
[6] Beneke, M.; Feldmann, T., Nucl. Phys. B, 592, 3, (2001)
[7] Kawamura, H.; Kodaira, J.; Qiao, C.-F.; Tanaka, K.; Kawamura, H.; Kodaira, J.; Qiao, C.-F.; Tanaka, K., Phys. Lett. B, Phys. Lett. B, 536, 344, (2002), Erratum
[8] Braun, V. M.; Ivanov, D. Yu.; Korchemsky, G. P., Phys. Rev. D, 69, 034014, (2004)
[9] Lee, S. J.; Neubert, M., Phys. Rev. D, 72, 094028, (2005)
[10] Kawamura, H.; Tanaka, K., Phys. Lett. B, 673, 201, (2009)
[11] Beneke, M.; Rohrwild, J., Eur. Phys. J. C, 71, 1818, (2011)
[12] Khodjamirian, A.; Wyler, D., (Gurzadyan, V. G.; Sedrakian, A. G., From Integrable Models to Gauge Theories, (2002), World Scientific), 227-241
[13] Lange, B. O.; Neubert, M., Phys. Rev. Lett., 91, 102001, (2003)
[14] Khodjamirian, A., Eur. Phys. J. C, 6, 477, (1999)
[15] Agaev, S. S.; Braun, V. M.; Offen, N.; Porkert, F. A.; Agaev, S. S.; Braun, V. M.; Offen, N.; Porkert, F. A., Phys. Rev. D, 83, 054020, (2011)
[16] Shifman, M. A.; Vainshtein, A. I.; Zakharov, V. I.; Shifman, M. A.; Vainshtein, A. I.; Zakharov, V. I., Nucl. Phys. B, Nucl. Phys. B, 147, 448, (1979)
[17] Khodjamirian, A.; Mannel, T.; Offen, N.; Khodjamirian, A.; Mannel, T.; Offen, N., Phys. Lett. B, Phys. Rev. D, 75, 054013, (2007)
[18] De Fazio, F.; Feldmann, T.; Hurth, T.; De Fazio, F.; Feldmann, T.; Hurth, T., Nucl. Phys. B, Nucl. Phys. B, 800, 405, (2008), Erratum
[19] Braun, V. M.; Halperin, I. E.; Braun, V. M.; Khodjamirian, A.; Maul, M.; Bijnens, J.; Khodjamirian, A., Phys. Lett. B, Phys. Rev. D, Eur. Phys. J. C, 26, 67, (2002)
[20] Khodjamirian, A.; Mannel, T.; Offen, N.; Wang, Y.-M., Phys. Rev. D, 83, 094031, (2011)
[21] Aubert, B., Phys. Rev. D, 80, 052002, (2009)
[22] Uehara, S.
[23] Bakulev, A. P.; Mikhailov, S. V.; Pimikov, A. V.; Stefanis, N. G., Phys. Rev. D, 86, 031501, (2012)
[24] Aubert, B., Phys. Rev. D, 80, 111105, (2009)
[25] Aubert, B.
[26] Adachi, I.
[27] Nishikawa, T.; Tanaka, K.
[28] Khodjamirian, A.; Stoll, G.; Wyler, D., Phys. Lett. B, 358, 129, (1995)
[29] Eilam, G.; Halperin, I. E.; Mendel, R. R., Phys. Lett. B, 361, 137, (1995)
[30] Ball, P.; Kou, E., JHEP, 0304, 029, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.