zbMATH — the first resource for mathematics

Form factors and strong couplings of heavy baryons from QCD light-cone sum rules. (English) Zbl 1301.81301
Summary: We derive QCD light-cone sum rules for the hadronic matrix elements of the heavy baryon transitions to nucleon. In the correlation functions the \({\Lambda}_{c}\), \({\Sigma}_{c}\) and \({\Lambda}_{b}\)-baryons are interpolated by three-quark currents and the nucleon distribution amplitudes are used. To eliminate the contributions of negative parity heavy baryons, we combine the sum rules obtained from different kinematical structures. The results are then less sensitive to the choice of the interpolating current. We predict the \({\Lambda}_{b} \to p\) form factor and calculate the widths of the \({\Lambda}_{b} \to p\ell\nu_{l}\) and \({\Lambda}_{b} \to p\pi\) decays. Furthermore, we consider double dispersion relations for the same correlation functions and derive the light-cone sum rules for the \({\Lambda}_{c}ND^{(\ast)}\) and \({\Sigma}_{c}ND^{(\ast)}\) strong couplings. Their predicted values can be used in the models of charm production in \( p\bar{p} \) collisions.

81V05 Strong interaction, including quantum chromodynamics
81V35 Nuclear physics
81U05 \(2\)-body potential quantum scattering theory
81U99 Quantum scattering theory
Full Text: DOI arXiv
[1] CDF collaboration; Aaltonen, T.; etal., First measurement of the ratio of branching functions \( {{{B\left( {Λ_b^0 → Λ_c^{+} {μ^{-} }{{\bar{ν }}_μ }} \right)}} \left/ {{B\left( {Λ_b^0 → Λ_c^{+} {π^{-} }} \right)}} \right.} \), Phys. Rev., D 79, 032001, (2009)
[2] CDF collaboration, T. Aaltonen et al., Observation of the Baryonic Flavor-Changing Neutral Current Decay Λ_{\(b\)}\^{0} → Λ\(μ\)\^{+}\(μ\)\^{−}, arXiv:1107.3753 [SPIRES].
[3] The LHCb collaboration, B. Adeva et al., Roadmap for selected key measurements of LHCb, arXiv:0912.4179 [SPIRES].
[4] The LHCb collaboration, G. Graziani et al., Recent LHCb Results, arXiv:1107.2328 [SPIRES].
[5] Wiedner, U., Future prospects for hadron physics at PANDA, Prog. Part. Nucl. Phys., 66, 477, (2011)
[6] Balitsky, II; Braun, VM; Kolesnichenko, AV, Radiative decay σ\^{+} → in quantum chromodynamics, Nucl. Phys., B 312, 509, (1989)
[7] Braun, VM; Filyanov, IE, QCD sum rules in exclusive kinematics and pion wave function, Z. Phys., C 44, 157, (1989)
[8] Chernyak, VL; Zhitnitsky, IR, B meson exclusive decays into baryons, Nucl. Phys., B 345, 137, (1990)
[9] Belyaev, VM; Khodjamirian, A.; Rückl, R., QCD calculation of the \(B\) → \(π\), \(K\) form-factors, Z. Phys., C 60, 349, (1993)
[10] Khodjamirian, A.; Rückl, R.; Weinzierl, S.; Yakovlev, OI, Perturbative QCD correction to the \(B\) → \(π\) transition form factor, Phys. Lett., B 410, 275, (1997)
[11] Bagan, E.; Ball, P.; Braun, VM, Radiative corrections to the decay \(B\) → πeν and the heavy quark limit, Phys. Lett., B 417, 154, (1998)
[12] Ball, P., \(B\) → \(π\) and \(B\) → \(K\) transitions from QCD sum rules on the light-cone, JHEP, 09, 005, (1998)
[13] Braun, V.; Fries, RJ; Mahnke, N.; Stein, E., Higher twist distribution amplitudes of the nucleon in QCD, Nucl. Phys., B 589, 381, (2000)
[14] Braun, VM; Lenz, A.; Mahnke, N.; Stein, E., Light-cone sum rules for the nucleon form factors, Phys. Rev., D 65, 074011, (2002)
[15] Lenz, A.; Wittmann, M.; Stein, E., Improved light-cone sum rules for the electromagnetic form factors of the nucleon, Phys. Lett., B 581, 199, (2004)
[16] Braun, VM; Lenz, A.; Wittmann, M., Nucleon form factors in QCD, Phys. Rev., D 73, 094019, (2006)
[17] Lenz, A.; Gockeler, M.; Kaltenbrunner, T.; Warkentin, N., The nucleon distribution amplitudes and their application to nucleon form factors and the \(N\) → ∆ transition at intermediate values of \(Q\)\^{2}, Phys. Rev., D 79, 093007, (2009)
[18] Ioffe, BL, Calculation of baryon masses in quantum chromodynamics, Nucl. Phys., B 188, 317, (1981)
[19] Belyaev, VM; Braun, VM; Khodjamirian, A.; Ruckl, R., \(D\)\^{*} and \(B\)\^{\(*\)} couplings in QCD, Phys. Rev., D 51, 6177, (1995)
[20] Huang, M-Q; Wang, D-W, Light-cone QCD sum rules for the semileptonic decay \( {Λ_b} → pl\bar{ν } \), Phys. Rev., D 69, 094003, (2004)
[21] Wang, Y-M; Li, Y.; Lü, C-D, Rare decays of λ_{\(b\)} → λ + \(γ\) and λ_{\(b\)} → λ + \(l\)\^{+}\(l\)\^{−} in the light-cone sum rules, Eur. Phys. J., C 59, 861, (2009)
[22] Wang, Y-M; Shen, Y-L; Lü, C-D, Λ_{\(b\)} → \(p\), λ transition form factors from QCD light-cone sum rules, Phys. Rev., D 80, 074012, (2009)
[23] Azizi, K.; Bayar, M.; Sarac, Y.; Sundu, H., Semileptonic λ_{\(b\),\(c\)} to nucleon transitions in full QCD at light cone, Phys. Rev., D 80, 096007, (2009)
[24] Aliev, TM; Azizi, K.; Savci, M., Strong coupling constants of light pseudoscalar mesons with heavy baryons in QCD, Phys. Lett., B 696, 220, (2011)
[25] Dai, Y-B; Huang, C-S; Huang, M-Q; Liu, C., QCD sum rule analysis for the λ_{\(b\)} → λ_{\(c\)} semileptonic decay, Phys. Lett., B 387, 379, (1996)
[26] Huang, C-S; Qiao, C-F; Yan, H-G, Decay \( {Λ_b} → pl\bar{ν } \) in QCD sum rules, Phys. Lett., B 437, 403, (1998)
[27] Navarra, FS; Nielsen, M., \( {g_{ND{Λ_c}}} \) from QCD sum rules, Phys. Lett., B 443, 285, (1998)
[28] Marques de Carvalho, RS; Navarra, FS; Nielsen, M.; Ferreira, E.; Dosch, HG, Form-factors and decay rates for heavy λ semileptonic decays from QCD sum rules, Phys. Rev., D 60, 034009, (1999)
[29] Particle Data Group collaboration; Nakamura, K.; etal., Review of particle physics, J. Phys., G 37, 075021, (2010)
[30] Bagan, E.; Chabab, M.; Dosch, HG; Narison, S., Baryon sum rules in the heavy quark effective theory, Phys. Lett., B 301, 243, (1993)
[31] Jido, D.; Kodama, N.; Oka, M., Negative-parity nucleon resonance in the QCD sum rule, Phys. Rev., D 54, 4532, (1996)
[32] Shuryak, EV, Hadrons containing a heavy quark and QCD sum rules, Nucl. Phys., B 198, 83, (1982)
[33] Chung, Y.; Dosch, HG; Kremer, M.; Schall, D., Baryon sum rules and chiral symmetry breaking, Nucl. Phys., B 197, 55, (1982)
[34] Braun, VM; Manashov, AN; Rohrwild, J., Baryon operators of higher twist in QCD and nucleon distribution amplitudes, Nucl. Phys., B 807, 89, (2009)
[35] Braun, VM; Lautenschlager, T.; Manashov, AN; Pirnay, B., Higher twist parton distributions from light-cone wave functions, Phys. Rev., D 83, 094023, (2011)
[36] Bagan, E.; Chabab, M.; Dosch, HG; Narison, S., Spectra of heavy baryons from QCD spectral sum rules, Phys. Lett., B 287, 176, (1992)
[37] Bagan, E.; Chabab, M.; Dosch, HG; Narison, S., The heavy baryons σ_{\(c\)} and σ_{\(b\)} from QCD spectral sum rules, Phys. Lett., B 278, 367, (1992)
[38] A. Khodjamirian, C. Klein, T. Mannel and Y.-M. Wang, How much charm can PANDA produce?, paper in preparation.
[39] Wang, Z-G, Analysis of the \( {\frac{1}{2}^± } \) flavor antitriplet heavy baryon states with QCD sum rules, Eur. Phys. J., C 68, 479, (2010)
[40] Chetyrkin, KG; etal., Charm and bottom quark masses: an update, Phys. Rev., D 80, 074010, (2009)
[41] Duplancic, G.; Khodjamirian, A.; Mannel, T.; Melic, B.; Offen, N., Light-cone sum rules for \(B\) → \(π\) form factors revisited, JHEP, 04, 014, (2008)
[42] Khodjamirian, A.; Klein, C.; Mannel, T.; Offen, N., Semileptonic charm decays \(D\) → πlν_{\(l\)} and \(D\) → klν_{\(l\)} from QCD light-cone sum rules, Phys. Rev., D 80, 114005, (2009)
[43] Ball, P.; Braun, VM; Gardi, E., Distribution amplitudes of the λ_{\(b\)} baryon in QCD, Phys. Lett., B 665, 197, (2008)
[44] Chernyak, VL; Zhitnitsky, IR, Nucleon wave function and nucleon form-factors in QCD, Nucl. Phys., B 246, 52, (1984)
[45] Bourrely, C.; Caprini, I.; Lellouch, L., Model-independent description of \(B\) → πlν decays and a determination of |\(V\)_{ub}|, Phys. Rev., D 79, 013008, (2009)
[46] Khodjamirian, A.; Mannel, T.; Offen, N.; Wang, YM, \(B\) → \(π\)ℓ\(ν\)_{\(l\)} width and |\(V\)_{ub}| from QCD light-cone sum rules, Phys. Rev., D 83, 094031, (2011)
[47] Lü, C-D; Wang, Y-M; Zou, H.; Ali, A.; Kramer, G., Anatomy of the pqcd approach to the baryonic decays λ_{\(b\)} → , pk, Phys. Rev., D 80, 034011, (2009)
[48] CDF collaboration; Aaltonen, T.; etal., Observation of new charmless decays of bottom hadrons, Phys. Rev. Lett., 103, 031801, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.