×

zbMATH — the first resource for mathematics

Charm-loop effect in \(B \to K^{(\ast)}\ell^{+}\ell^{-}\) and \(B \to K^{\ast}\gamma\). (English) Zbl 1291.81390
Summary: We calculate the long-distance effect generated by the four-quark operators with \(c\)-quarks in the \(B \to K^{(\ast)}\ell^{+}\ell^{-}\) decays. At the lepton-pair invariant masses far below the \(\bar{c}c\)-threshold, \(q^{2} \ll 4m_{c}^{2}\), we use OPE near the light-cone. The nonfactorizable soft gluon emission from \(c\)-quarks is cast in the form of a nonlocal effective operator. The \(B \to K^{(\ast)}\) matrix elements of this operator are calculated from the QCD light-cone sum rules with the \(B\)-meson distribution amplitudes. As a byproduct, we also predict the charm-loop contribution to \(B \to K^{\ast}\gamma\) beyond the local-operator approximation. To describe the charm-loop effect at large \(q^{2}\), we employ the hadronic dispersion relation with \(\psi = J/\psi, \psi(2S),...\) contributions, where the measured \(B \to K^{(\ast)}\psi\) amplitudes are used as inputs. Matching this relation to the result of QCD calculation reveals a destructive interference between the \(J/\psi\) and \(\psi(2S)\) contributions. The resulting charm-loop effect is represented as a \(q^{2}\)-dependent correction \(\Delta C_{9}(q^{2})\) to the Wilson coefficient \(C_{9}\). Within uncertainties of our calculation, at \(q^{2}\) below the charmonium region the predicted ratio \(\Delta C_{9}(q^{2})/C_{9}\) is \(\leq 5\)% for \(B \to K\ell^{+}\ell^{-}\), but can reach as much as 20% for \(B \to K^{\ast}\ell^{+}\ell^{-}\), the difference being mainly caused by the soft-gluon contribution.

MSC:
81V05 Strong interaction, including quantum chromodynamics
81V35 Nuclear physics
81U99 Quantum scattering theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Grinstein, B.; Savage, MJ; Wise, MB, \(B\) → \(X\)_{\(s\)}\(e\)\^{+}\(e\)\^{−} in the six quark model, Nucl. Phys., B 319, 271, (1989)
[2] Misiak, M., The \(b\) → se\^{+} → \(e\)\^{−} and \(b\) → decays with next-to-leading logarithmic QCD corrections, Nucl. Phys., B 393, 23, (1993)
[3] Buras, AJ; Münz, M., Effective Hamiltonian for \(B\) → \(X\)_{\(s\)}\(e\)\^{+}\(e\)\^{−} beyond leading logarithms in the NDR and HV schemes, Phys. Rev., D 52, 186, (1995)
[4] Buchalla, G.; Buras, AJ; Lautenbacher, ME, Weak decays beyond leading logarithms, Rev. Mod. Phys., 68, 1125, (1996)
[5] CKMfitter Group; Charles, J.; etal., CP violation and the CKM matrix: assessing the impact of the asymmetric B factories, Eur. Phys. J., C 41, 1, (2005)
[6] Beneke, M.; Feldmann, T.; Seidel, D., Systematic approach to exclusive \(B\) → Vℓ\^{+}\(ℓ\)\^{−}, decays, Nucl. Phys., B 612, 25, (2001)
[7] Voloshin, MB, Large \(O\)(\(m\)(\(c\))\^{−2}) nonperturbative correction to the inclusive rate of the decay \(B\) → \(X\)_{\(s\)}\(γ\), Phys. Lett., B 397, 275, (1997)
[8] Khodjamirian, A.; Ruckl, R.; Stoll, G.; Wyler, D., QCD estimate of the long-distance effect in \(B\) → \(K\)\^{*}\(γ\), Phys. Lett., B 402, 167, (1997)
[9] Ball, P.; Jones, GW; Zwicky, R., \(B\) → beyond QCD factorisation, Phys. Rev., D 75, 054004, (2007)
[10] Ligeti, Z.; Randall, L.; Wise, MB, Comment on nonperturbative effects in \( \bar{B} → {X_s}γ \), Phys. Lett., B 402, 178, (1997)
[11] Grant, AK; Morgan, AG; Nussinov, S.; Peccei, RD, Comment on nonperturbative \(O\)(1/m(\(c\))\^{2}) corrections to \( Γ \left( {\bar{B} → {X_s}γ } \right) \), Phys. Rev., D 56, 3151, (1997)
[12] Chen, J-W; Rupak, G.; Savage, MJ, Non-1/\(m\)_{\(b\)}\^{\(n\)} power suppressed contributions to inclusive \(B\) → \(X\)_{\(s\)}\(ℓ\)\^{+}\(ℓ\)\^{−} decays, Phys. Lett., B 410, 285, (1997)
[13] Buchalla, G.; Isidori, G.; Rey, SJ, Corrections of order \( {{{Λ_{\text{QCD}}^2}} \left/ {{m_c^2}} \right.} \) to inclusive rare B decays, Nucl. Phys., B 511, 594, (1998)
[14] Khodjamirian, A.; Mannel, T.; Offen, N., B-meson distribution amplitude from the B → π form factor, Phys. Lett., B 620, 52, (2005)
[15] Khodjamirian, A.; Mannel, T.; Offen, N., Form factors from light-cone sum rules with B-meson distribution amplitudes, Phys. Rev., D 75, 054013, (2007)
[16] Ali, A.; Mannel, T.; Morozumi, T., Forward backward asymmetry of dilepton angular distribution in the decay \(b\) → sℓ\^{+}\(ℓ\)\^{−}, Phys. Lett., B 273, 505, (1991)
[17] Krüger, F.; Sehgal, LM, Lepton polarization in the decays \(B\) → \(X\)_{\(s\)}\(μ\)\^{+}\(μ\)\^{−} and \(B\) → \(X\)_{\(s\)}\(τ\)\^{+}\(τ\)\^{−}, Phys. Lett., B 380, 199, (1996)
[18] Beneke, M.; Buchalla, G.; Neubert, M.; Sachrajda, CT, Penguins with charm and quark-hadron duality, Eur. Phys. J., C 61, 439, (2009)
[19] Ali, A.; Ball, P.; Handoko, LT; Hiller, G., A comparative study of the decays \(B\) → (\(K\), \(K\)\^{*}) \(ℓ\)\^{+}\(ℓ\)\^{−} in standard model and supersymmetric theories, Phys. Rev., D 61, 074024, (2000)
[20] P. Colangelo and A. Khodjamirian, QCD sum rules, a modern perspective, hep-ph/0010175 [SPIRES].
[21] Ball, P.; Zwicky, R., New results on \(B\) → π, K, η decay formfactors from light-cone sum rules, Phys. Rev., D 71, 014015, (2005)
[22] Ball, P.; Zwicky, R., \(B\)_{d,s} → ρ, ω, K*, ϕ decay form factors from light-cone sum rules revisited, Phys. Rev., D 71, 014029, (2005)
[23] Duplancic, G.; Khodjamirian, A.; Mannel, T.; Melic, B.; Offen, N., Light-cone sum rules for \(B\) → \(π\) form factors revisited, JHEP, 04, 014, (2008)
[24] Bosch, SW; Buchalla, G., The radiative decays \(B\) → at next-to-leading order in QCD, Nucl. Phys., B 621, 459, (2002)
[25] Ali, A.; Parkhomenko, AY, Branching ratios for \(B\) → ργ decays in next-to-leading order in \(α\)_{\(s\)} including hard spectator corrections, Eur. Phys. J., C 23, 89, (2002)
[26] Ali, A.; Kramer, G.; Zhu, G-H, \(B\) → \(K\)\^{*}\(ℓ\)\^{+}\(ℓ\)\^{−} in soft-collinear effective theory, Eur. Phys. J., C 47, 625, (2006)
[27] Balitsky, II; Braun, VM, Evolution equations for QCD string operators, Nucl. Phys., B 311, 541, (1989)
[28] Belyaev, VM; Braun, VM; Khodjamirian, A.; Ruckl, R., \(D\)\^{\(*\)} and \(B\)\^{\(*\)} couplings in QCD, Phys. Rev., D 51, 6177, (1995)
[29] Khodjamirian, A.; Ruckl, R., QCD sum rules for exclusive decays of heavy mesons, Adv. Ser. Direct. High Energy Phys., 15, 345, (1998)
[30] Lee, SJ; Neubert, M.; Paz, G., Enhanced non-local power corrections to the \(B\) → \(X\)_{\(s\)} + γ decay rate, Phys. Rev., D 75, 114005, (2007)
[31] M. Benzke, S.J. Lee, M. Neubert and G. Paz, Factorization at subleading power and irreducible uncertainties in\( \bar{B} → {X_s}γ \)decay, arXiv:1003.5012 [SPIRES].
[32] Khodjamirian, A., \(B\) → ππ decay in QCD, Nucl. Phys., B 605, 558, (2001)
[33] Melic, B., Nonfactorizable corrections to \(B\) → J/ψK, Phys. Rev., D 68, 034004, (2003)
[34] Kawamura, H.; Kodaira, J.; Qiao, C-F; Tanaka, K., B meson light-cone distribution amplitudes in the heavy-quark limit, Phys. Lett., B 523, 111, (2001)
[35] Braun, VM; Ivanov, DY; Korchemsky, GP, The B-meson distribution amplitude in QCD, Phys. Rev., D 69, 034014, (2004)
[36] Chetyrkin, KG; etal., Charm and bottom quark masses: an update, Phys. Rev., D 80, 074010, (2009)
[37] Chetyrkin, KG; Khodjamirian, A., Strange quark mass from pseudoscalar sum rule with \(O\)(\(α\)_{\(s\)}\^{4}) accuracy, Eur. Phys. J., C 46, 721, (2006)
[38] Jamin, M.; Oller, JA; Pich, A., Scalar Kπ form factor and light quark masses, Phys. Rev., D 74, 074009, (2006)
[39] Beneke, M.; Buchalla, G.; Neubert, M.; Sachrajda, CT, QCD factorization for \(B\) → ππ decays: strong phases and CP-violation in the heavy quark limit, Phys. Rev. Lett., 83, 1914, (1999)
[40] Beneke, M.; Buchalla, G.; Neubert, M.; Sachrajda, CT, QCD factorization in \(B\) → πK, ππ decays and extraction of wolfenstein parameters, Nucl. Phys., B 606, 245, (2001)
[41] Heavy Flavor Averaging Group, www.slac.stantford.edu/xorg/hfag/.
[42] Beneke, M.; Rohrer, J.; Yang, D., Branching fractions, polarisation and asymmetries of \(B\) → VV decays, Nucl. Phys., B 774, 64, (2007)
[43] BABAR collaboration; Aubert, B.; etal., Measurement of decay amplitudes of \(B\) → J/ψK\^{\(*\)}, ψ(2\(S\))\(K\)\^{\(*\)} and χ_{\(c\)1}\(K\)\^{\(*\)} with an angular analysis, Phys. Rev., D 76, 031102, (2007)
[44] Duplancic, G.; Melic, B., \(B\), \(B\)_{\(s\)} → \(K\) form factors: an update of light-cone sum rule results, Phys. Rev., D 78, 054015, (2008)
[45] Bourrely, C.; Caprini, I.; Lellouch, L., Model-independent description of \(B\) → πlν decays and a determination of |\(V\)_{ub}|, Phys. Rev., D 79, 013008, (2009)
[46] Particle Data Group collaboration; Amsler, C.; etal., Review of particle physics, Phys. Lett., B 667, 1, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.