zbMATH — the first resource for mathematics

\(\mathcal N\)-hyper sets. (English) Zbl 1402.06009
Summary: To deal with the uncertainties, fuzzy set theory can be considered as one of the mathematical tools by L. A. Zadeh [Inf. Control 8, 338–353 (1965; Zbl 0139.24606)]. As a mathematical tool to deal with negative information, Y. B. Jun et al. introduced a new function, which is called a negative-valued function, and constructed \(\mathcal N\)-structures in [“\(\mathcal N\)-ideals of BCK/BCI-algebras”, J. Chungcheong Math. Soc. 22, No. 3, 417–437 (2009)]. Since then, \(\mathcal N\)-structures are applied to algebraic structures and soft sets, etc. Using the \(\mathcal N\)-structures, the notions of (extended) \(\mathcal N\)-hyper sets, \(\mathcal N\)-substructures of type 1, 2, 3 and 4 are introduced, and several related properties are investigated in this research paper.
06F35 BCK-algebras, BCI-algebras (aspects of ordered structures)
03E72 Theory of fuzzy sets, etc.
Full Text: DOI
[1] Zadeh, L.A.; Fuzzy sets; Inf. Control: 1965; Volume 8 ,338-353. · Zbl 0139.24606
[2] Jun, Y.B.; Lee, K.J.; Song, S.Z.; 𝒩-ideals of BCK/BCI-algebras; J. Chungcheong Math. Soc.: 2009; Volume 22 ,417-437.
[3] Ceven, Y.; 𝒩-ideals of rings; Int. J. Algebra: 2012; Volume 6 ,1227-1232. · Zbl 1287.16044
[4] Jun, Y.B.; Öztürk, M.A.; Roh, E.H.; 𝒩-structures applied to closed ideals in BCH-algebras; Int. J. Math. Math. Sci.: 2010; ,943565.
[5] Khan, A.; Jun, Y.B.; Shabir, M.; 𝒩-fuzzy quasi-ideals in ordered semigroups; Quasigroups Relat. Syst.: 2009; Volume 17 ,237-252. · Zbl 1195.06012
[6] Khan, A.; Jun, Y.B.; Shabir, M.; 𝒩-fuzzy ideals in ordered semigroups; Int. J. Math. Math. Sci.: 2009; ,814861. · Zbl 1186.06008
[7] Khan, A.; Jun, Y.B.; Shabir, M.; 𝒩-fuzzy filters in ordered semigroups; Fuzzy Syst. Math.: 2010; Volume 24 ,1-5.
[8] Khan, A.; Jun, Y.B.; Shabir, M.; 𝒩-fuzzy bi-ideals in ordered semigroups; J. Fuzzy Math.: 2011; Volume 19 ,747-762. · Zbl 1237.06008
[9] Jun, Y.B.; Alshehri, N.O.; Lee, K.J.; Soft set theory and 𝒩-structures applied to BCH-algebras; J. Comput. Anal. Appl.: 2014; Volume 16 ,869-886. · Zbl 1287.06020
[10] Jun, Y.B.; Lee, K.J.; Kang, M.S.; Ideal theory in BCK/BCI-algebras based on soft sets and 𝒩-structures; Discret. Dyn. Nat. Soc.: 2012; ,910450. · Zbl 1247.06015
[11] Jun, Y.B.; Song, S.Z.; Lee, K.J.; The combination of soft sets and 𝒩-structures with applications; J. Appl. Math.: 2013; ,420312.
[12] Bucolo, M.; Fortuna, L.; la Rosa, M.; Complex dynamics through fuzzy chains; IEEE Trans. Fuzzy Syst.: 2004; Volume 12 ,289-295.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.