×

zbMATH — the first resource for mathematics

Structure-preserving function approximation via convex optimization. (English) Zbl 1453.90124
MSC:
90C25 Convex programming
41A29 Approximation with constraints
42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
65D15 Algorithms for approximation of functions
65K05 Numerical mathematical programming methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Anton and C. Rorres, Elementary Linear Algebra, Binder Ready Version: Applications Version, John Wiley & Sons, New York, 2013.
[2] H. Bauschke and J. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), pp. 367-426, https://doi.org/10.1137/S0036144593251710. · Zbl 0865.47039
[3] R. Beatson, Restricted range approximation by splines and variational inequalities, SIAM J. Numer. Anal., 19 (1982), pp. 372-380, https://doi.org/10.1137/0719023. · Zbl 0491.41011
[4] R. K. Beatson, The degree of monotone approximation, Pacific J. Math., 74 (1978), pp. 5-14. · Zbl 0349.41005
[5] M. Berzins, Adaptive polynomial interpolation on evenly spaced meshes, SIAM Rev., 49 (2007), pp. 604-627, https://doi.org/10.1137/050625667. · Zbl 1133.65007
[6] J. P. Boyd, Computing zeros on a real interval through Chebyshev expansion and polynomial rootfinding, SIAM J. Numer. Anal., 40 (2003), pp. 1666-1682. · Zbl 1034.65028
[7] S. Boyd and L. Vandenberghe, Convex Optimization, with Corrections, 1st ed., 2008, Cambridge University Press, Cambridge, 2004. · Zbl 1058.90049
[8] S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, 1st ed., Cambridge University Press, Cambridge, 2018. · Zbl 1406.15001
[9] L. Bregman, The method of successive projection for finding a common point of convex sets, Soviet Math Dokl., 6 (1965), pp. 688-692. · Zbl 0142.16804
[10] M. Campos-Pinto, F. Charles, and B. Després, Algorithms for positive polynomial approximation, SIAM J. Numer. Anal., 57 (2019), pp. 148-172, https://doi.org/10.1137/17M1131891. · Zbl 1415.65031
[11] W. Cheney and A. A. Goldstein, Proximity maps for convex sets, Proc. Amer. Math. Soc., 10 (1959), pp. 448-450, https://doi.org/10.2307/2032864. · Zbl 0092.11403
[12] F. Deutsch and H. Hundal, The rate of convergence for the cyclic projections algorithm I: Angles between convex sets, J. Approx. Theory, 142 (2006), pp. 36-55, https://doi.org/10.1016/j.jat.2006.02.005. · Zbl 1109.41016
[13] F. R. Deutsch, Best Approximation in Inner Product Spaces, Springer Science & Business Media, New York, 2012. · Zbl 0980.41025
[14] R. A. DeVore, Degree of Monotone Approximation, International Series of Numerical Mathematics, Birkhäuser, Basel, 1974, https://doi.org/10.1007/978-3-0348-5991-2_26. · Zbl 0315.41016
[15] Semi-Infinite Programming: Recent Advances, Nonconvex Optimization and Its Applications, Springer, New York, 2001, https://doi.org/10.1007/978-1-4757-3403-4.
[16] L. G. Gubin, B. T. Polyak, and E. V. Raik, The method of projections for finding the common point of convex sets, USSR Comput. Math. Math. Phys., 7 (1967), pp. 1-24, https://doi.org/10.1016/0041-5553(67)90113-9.
[17] R. Hettich and K. O. Kortanek, Semi-Infinite Programming: Theory, Methods, and Applications, SIAM Rev., 35 (1993), pp. 380-429, https://doi.org/10.1137/1035089. · Zbl 0784.90090
[18] A. S. Lewis, D. R. Luke, and J. Malick, Local linear convergence for alternating and averaged nonconvex projections, Found. Comput. Math., 9 (2009), pp. 485-513, https://doi.org/10.1007/s10208-008-9036-y. · Zbl 1169.49030
[19] J. Lewis, Approximation with convex constraints, SIAM Rev., 15 (1973), pp. 193-217, https://doi.org/10.1137/1015006.
[20] Y. Nakatsukasa and V. Noferini, On the stability of computing polynomial roots via confederate linearizations, Math. Comp., 85 (2016), pp. 2391-2425, https://doi.org/10.1090/mcom3049. · Zbl 1347.65096
[21] R. Nochetto and L. Wahlbin, Positivity preserving finite element approximation, Math. Comp., 71 (2002), pp. 1405-1419, https://doi.org/10.1090/S0025-5718-01-01369-2. · Zbl 1001.41011
[22] J. Rice, Approximation with convex constraints, J. Soc. Indust. Appl. Math., 11 (1963), pp. 15-32, https://doi.org/10.1137/0111002. · Zbl 0116.04501
[23] O. Stein, How to solve a semi-infinite optimization problem, Euro. J. Oper. Res., 223 (2012), pp. 312-320, https://doi.org/10.1016/j.ejor.2012.06.009. · Zbl 1292.90300
[24] G. Szegö”, Orthogonal Polynomials, 4th ed., American Mathematical Soc., 1975. · Zbl 0305.42011
[25] J. von Neumann, Functional Operators (AM-22), Volume 2: The Geometry of Orthogonal Spaces, \em(AM-22\em), Ann. of Math. Stud. 22, Princeton University Press, Princeton, NJ, 2016, https://books.google.com/books?id=IB3YCwAAQBAJ.
[26] X. Zhang and C.-W. Shu, Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: Survey and new developments, Proc. R. S. Lond. A: Math. Phys. Engrg. Sci., (2011), rspa20110153, https://doi.org/10.1098/rspa.2011.0153. · Zbl 1222.65107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.