×

Discrete-time distributed consensus on multiplex networks. (English) Zbl 1451.68032

Summary: We introduce a discrete-time distributed consensus process on multi-layered complex networks represented by multiplex graphs. The proposed consensus process can be characterized with a multiplex Markov chain (MC) composed of a mixture of interlayer and intralayer MCs. The interlayer MC is characterized by a parameter which represents the probability that the chain will switch between different layers of the multiplex network. Surprisingly, for large regions of the parameter space the convergence speed of the multiplex MC is determined only by the convergence speed of the interlayer MC. Moreover, as the number of layers in the network is increased, these regions increase until they encompass the whole parameter space. We also show that for some regions of the parameter space, the multiplex MC has a faster convergence speed than the MCs on top of the individual layers, thus complementing previous results on diffusion on multiplex networks.

MSC:

68M12 Network protocols
68M14 Distributed systems
68R10 Graph theory (including graph drawing) in computer science
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DeGroot M H 1974 J. Am. Stat. Assoc.69 118-21 · Zbl 0282.92011 · doi:10.1080/01621459.1974.10480137
[2] Olfati-Saber R, Fax J A and Murray R M 2007 Proc. IEEE95 215-33 · Zbl 1376.68138 · doi:10.1109/JPROC.2006.887293
[3] Ren W and Cao Y 2011 Distributed Coordination of Multi-agent Networks: Emergent problems, Models, and Issues (Berlin: Springer) · Zbl 1225.93003 · doi:10.1007/978-0-85729-169-1
[4] Nijmeijer H and Mareels I M 1997 IEEE Trans. Circuits Syst. I 44 882-90 · doi:10.1109/81.633877
[5] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep.469 93-153 · doi:10.1016/j.physrep.2008.09.002
[6] Newman M 2010 Networks: An Introduction (Oxford: Oxford University Press) · Zbl 1195.94003 · doi:10.1093/acprof:oso/9780199206650.001.0001
[7] Vicsek T, Czirók A, Ben-Jacob E, Cohen I and Shochet O 1995 Phys. Rev. Lett.75 1226 · doi:10.1103/PhysRevLett.75.1226
[8] Jadbabaie A, Lin J and Morse A S 2003 IEEE Trans. Autom. Control48 988-1001 · Zbl 1364.93514 · doi:10.1109/TAC.2003.812781
[9] Olfati-Saber R 2006 IEEE Trans. Autom. Control51 401-20 · Zbl 1366.93391 · doi:10.1109/TAC.2005.864190
[10] Szell M, Lambiotte R and Thurner S 2010 107 13636-41 · doi:10.1073/pnas.1004008107
[11] Buldyrev S V, Parshani R, Paul G, Stanley H E and Havlin S 2010 Nature464 1025-8 · doi:10.1038/nature08932
[12] Morris R G and Barthelemy M 2012 Phys. Rev. Lett.109 128703 · doi:10.1103/PhysRevLett.109.128703
[13] de Domenico M, Solé-Ribalta A, Cozzo E, Kivelä M, Moreno Y, Porter M A, Gómez S and Arenas A 2013 Phys. Rev. X 3 041022
[14] Gómez S, Díaz-Guilera A, Gómez-Gardeñes J, Perez-Vicente C J, Moreno Y and Arenas A 2013 Phys. Rev. Lett.110 028701 · doi:10.1103/PhysRevLett.110.028701
[15] de Domenico M, Solé-Ribalta A, Gómez S and Arenas A 2014 Proc. Natl Acad. Sci.111 8351-6 · Zbl 1355.90014 · doi:10.1073/pnas.1318469111
[16] Meyer C D 2000 Matrix Analysis and Applied Linear Algebra vol 2 (Philadelphia, PA: SIAM) · Zbl 0962.15001 · doi:10.1137/1.9780898719512
[17] Smilkov D and Kocarev L 2011 Phys. Rev. E 84 016104 · doi:10.1103/PhysRevE.84.016104
[18] Lambiotte R, Sinatra R, Delvenne J C, Evans T, Barahona M and Latora V 2011 Phys. Rev. E 84 017102 · doi:10.1103/PhysRevE.84.017102
[19] Radicchi F and Arenas A 2013 Nat. Phys.9 717-20 · doi:10.1038/nphys2761
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.