×

A program for solving the \(L_ 2\) reduced-order model problem with fixed denominator degree. (English) Zbl 0830.65066

A set of necessary conditions which must be satisfied by the \(L_2\) optimal rational transfer matrix approximating a given higher order transfer matrix is briefly described. The model reduction problem consists in the approximation of a large-scale linear system by a lower- order model according to a suitable criterion.
The paper proposes an efficient algorithm which is based on a re- formulation of the first-order necessary conditions of optimality in terms of interpolation constraints and does not require gradient computations. The main features of this algorithm are illustrated and the corresponding program is implemented using MATLAB functions.
The claim of the authors is that the present algorithm is computationally much simpler than most optimal or seven suboptimal reduction techniques presently available, since it requires only the solution of linear equations.

MSC:

65K10 Numerical optimization and variational techniques
93B11 System structure simplification
93A15 Large-scale systems

Software:

Matlab; na8
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P.R. Aigrain and A.M. Williams, Synthesis of n-reactance networks for desired transient response, J. Appl. Phys. 20 (1949) 597–600. · Zbl 0033.32106 · doi:10.1063/1.1698434
[2] K.J. Åström,Introduction to Stochastic Control Theory (Academic Press, New York, 1970).
[3] L. Baratchart, Recent and new results in rational L2 approximation, in:Modelling, Robustness and Sensitivity Reduction in Control Systems, ed. R.F. Curtain (Springer, Berlin, 1987) pp. 119–126.
[4] L. Baratchart, M. Cardelli and M. Olivi, Identification and rational L2 approximation: a gradient algorithm, Automatica 27 (1991) 413–418. · Zbl 0729.93079 · doi:10.1016/0005-1098(91)90092-G
[5] A.E. Bryson and A. Carrier, Second-order algorithm for optimal model order reduction, J. Guidance Control Dynam. 13 (1990) 887–892. · Zbl 0711.93031 · doi:10.2514/3.25416
[6] F.R. Gantmacher,The Theory of Matrices, Vol. 1 (Chelsea, New York, 1977). · Zbl 0085.01001
[7] W. Gawronski and J.N. Juang, Model reduction for flexible structures, Control Dyn. Syst. 36 (1990) 143–222. · Zbl 0728.93007
[8] D.C. Hyland and D.S. Bernstein, The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton and Moore, IEEE Trans. Auto. Contr. AC-30 (1985) 1201–1211. · Zbl 0583.93004 · doi:10.1109/TAC.1985.1103865
[9] W. Krajewski, A. Lepschy, G.A. Mian and U. Viaro, On model reduction by L2-optimal pole retention, J. Franklin Inst. 327 (1990) 61–70. · Zbl 0695.93036 · doi:10.1016/0016-0032(90)90057-P
[10] W. Krajewski, A. Lepschy and U. Viaro, Optimality conditions in multivariable L2 model reduction, J. Franklin Inst. 330 (1993) 431–439. · Zbl 0812.93019 · doi:10.1016/0016-0032(93)90090-H
[11] C. P. Kwong, Optimal chained aggregation for reduced order modelling, Int. J. Control 35 (1982) 965–982. · Zbl 0483.93034 · doi:10.1080/00207178208922665
[12] L. Meier and D.G. Luenberger, Approximation of linear constant systems, IEEE Trans. Auto. Contr. AC-12 (1967) 585–587. · doi:10.1109/TAC.1967.1098680
[13] R.N. Mishra and D.A. Wilson, A new algorithm for optimal reduction of multivariable systems, Int. J. Control 31 (1980) 443–466. · Zbl 0439.93013 · doi:10.1080/00207178008961054
[14] B.C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Auto. Contr. AC-26 (1981) 17–32. · Zbl 0464.93022 · doi:10.1109/TAC.1981.1102568
[15] S. Mukherjee and R. N. Mishra, Reduced order modelling of linear multivariable systems using an error minimization technique. J. Franklin Inst. 325 (1988) 235–245. · Zbl 0642.93036 · doi:10.1016/0016-0032(88)90085-3
[16] M. Olivi and S. Steer, Approximation rationelle en norme L2 des systèmes dynamiques, APII 24 (1990) 481–510. · Zbl 0719.93012
[17] E. Rosencher, Approximation rationelle des filtres à un ou deux indices: une approche Hilbertienne, Thèse de docteur-ingénieur, Univ. Paris IX-Dauphine (1978).
[18] G. Ruckebush, Sur l’approximation rationelle des filtres, Rapport n. 35, CMA Ecole Polytechnique, Paris (1978).
[19] Y. Shamash, Linear system reduction using Padé approximation to allow retention of dominant modes, Int. J. Control 21 (1975) 257–272. · Zbl 0296.93022 · doi:10.1080/00207177508921985
[20] J.T. Spanos, M.H. Milman and D.L. Mingori, A new algorithm for L2 optimal model reduction, Automatica 28 (1992) 897–909. · Zbl 0762.93014 · doi:10.1016/0005-1098(92)90143-4
[21] J.L. Walsh,Interpolation and Approximation by Rational Functions in the Complex Domain (AMS, Providence, RI, 1935). · Zbl 0013.05903
[22] D.A. Wilson, Optimum solution of model-reduction problem, Proc. IEE 117 (1970) 1161–1165.
[23] D.A. Wilson, Model reduction for multivariable systems, Int. J. Control 20 (1974) 57–64. · Zbl 0281.93008 · doi:10.1080/00207177408932715
[24] D. Žigić, L. T. Watson, E.G. Collins, Jr., and D. S. Bernstein, Homotopy methods for solving the optimal projection equations for the H2 reduced order model problem, Int. J. Control 56 (1992) 173–191. · Zbl 0766.93009 · doi:10.1080/00207179208934308
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.