zbMATH — the first resource for mathematics

On complexity of realization of monotone symmetric functions of the logic algebra by contact schemes. (Russian) Zbl 0668.94021
A monotone symmetric function can be realized by a contact scheme. Then the order of numbers of contacts in the contact schemes corresponding to the n argument functions does not exceed \(n(n+1)\). Since each such function may be assumed as a periodic one, at the costs of a crumble of its period, one can decrease the number of contacts needed for its realization. In this paper a general method for realization of such construction has been described.
Reviewer: J.Zurawiecki

94C10 Switching theory, application of Boolean algebra; Boolean functions (MSC2010)