×

dalex: responsible machine learning with interactive explainability and fairness in Python. (English) Zbl 07626729

Summary: In modern machine learning, we observe the phenomenon of opaqueness debt, which manifests itself by an increased risk of discrimination, lack of reproducibility, and deflated performance due to data drift. An increasing amount of available data and computing power results in the growing complexity of black-box predictive models. To manage these issues, good MLOps practice asks for better validation of model performance and fairness, higher explainability, and continuous monitoring. The necessity for deeper model transparency comes from both scientific and social domains and is also caused by emerging laws and regulations on artificial intelligence. To facilitate the responsible development of machine learning models, we introduce dalex, a Python package which implements a model-agnostic interface for interactive explainability and fairness. It adopts the design crafted through the development of various tools for explainable machine learning; thus, it aims at the unification of existing solutions. This library’s source code and documentation are available under open license at https://python.drwhy.ai.

MSC:

68T05 Learning and adaptive systems in artificial intelligence

References:

[1] Mart´ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A System for Large-Scale Machine Learning.USENIX Conference on Operating Systems Design and Implementation, pages 265-283, 2016.
[2] Ashraf Abdul, Jo Vermeulen, Danding Wang, Brian Y. Lim, and Mohan Kankanhalli. Trends and Trajectories for Explainable, Accountable and Intelligible Systems: An HCI Research Agenda.CHI Conference on Human Factors in Computing Systems, pages 1-18, 2018.
[3] Maximilian Alber, Sebastian Lapuschkin, Philipp Seegerer, Miriam H¨agele, Kristof T. Sch¨utt, Gr´egoire Montavon, Wojciech Samek, Klaus-Robert M¨uller, Sven D¨ahne, and Pieter-Jan Kindermans. iNNvestigate Neural Networks!Journal of Machine Learning Research, 20(93):1-8, 2019.
[4] Vijay Arya, Rachel K. E. Bellamy, Pin-Yu Chen, Amit Dhurandhar, Michael Hind, Samuel C. Hoffman, Stephanie Houde, Q. Vera Liao, Ronny Luss, Aleksandra Mojsilovic, Sami Mourad, Pablo Pedemonte, Ramya Raghavendra, John T. Richards, Prasanna Sattigeri, Karthikeyan Shanmugam, Moninder Singh, Kush R. Varshney, Dennis Wei, and Yunfeng Zhang. AI Explainability 360: An Extensible Toolkit for Understanding Data and Machine Learning Models.Journal of Machine Learning Research, 21(130):1-6, 2020.
[5] Hubert Baniecki and Przemyslaw Biecek. modelStudio: Interactive studio with explanations for ML predictive models.Journal of Open Source Software, 4(43):1798, 2019.
[6] Hubert Baniecki and Przemyslaw Biecek. The Grammar of Interactive Explanatory Model Analysis.arXiv preprint arXiv:2005.00497, 2020.
[7] Alejandro Barredo Arrieta, Natalia Diaz Rodriguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado Gonz´alez, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, V. Richard Benjamins, Raja Chatila, and Francisco Herrera. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.Information Fusion, 58:82-115, 2019.
[8] Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman, Stephanie Houde, Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mojsilovic, Seema Nagar, Karthikeyan Natesan Ramamurthy, John Richards, Diptikalyan Saha, Prasanna Sattigeri, Moninder Singh, Kush R. Varshney, and Yunfeng Zhang. AI
[9] Przemyslaw Biecek. DALEX: Explainers for Complex Predictive Models in R.Journal of Machine Learning Research, 19(84):1-5, 2018.
[10] Przemyslaw Biecek and Tomasz Burzykowski.Explanatory Model Analysis. Chapman and Hall/CRC, New York, 2021. ISBN 9780367135591. URLhttps://pbiecek.github.io/ ema.
[11] Reuben Binns. Fairness in Machine Learning: Lessons from Political Philosophy.Conference on Fairness, Accountability and Transparency, 81:149-159, 2018.
[12] Sarah Bird, Miro Dud´ık, Richard Edgar, Brandon Horn, Roman Lutz, Vanessa Milan, Mehrnoosh Sameki, Hanna Wallach, and Kathleen Walker. Fairlearn: A toolkit for assessing and improving fairness in AI. Technical Report MSR-TR-2020-32, Microsoft, 2020.
[13] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System.ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785- 794, 2016.
[14] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian. Certifying and Removing Disparate Impact.ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 259-268, 2015.
[15] Navdeep Gill, Patrick Hall, Kim Montgomery, and Nicholas Schmidt. A Responsible Machine Learning Workflow with Focus on Interpretable Models, Post-hoc Explanation, and Discrimination Testing.Information, 11(3):137, 2020.
[16] H2O.ai.Python Interface for H2O, 2020. URLhttps://github.com/h2oai/h2o-3.
[17] Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern’andez del R’ıo, Mark Wiebe, Pearu Peterson, Pierre G’erardMarchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy.Nature, 585(7825): 357-362, 2020.
[18] Kenneth Holstein, Jennifer Wortman Vaughan, Hal Daum´e, Miro Dudik, and Hanna Wallach. Improving Fairness in Machine Learning Systems: What Do Industry Practitioners Need?CHI Conference on Human Factors in Computing Systems, pages 1-16, 2019.
[19] Li Jiangchun.PDPbox: python partial dependence plot toolbox, 2018.URLhttps:// github.com/SauceCat/PDPbox.
[20] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. LightGBM: A Highly Efficient Gradient Boosting Decision Tree.Advances in Neural Information Processing Systems, 30:3146-3154, 2017.
[21] Janis Klaise, Arnaud Van Looveren, Giovanni Vacanti, and Alexandru Coca. Alibi Explain: Algorithms for Explaining Machine Learning Models.Journal of Machine Learning Research, 22(181):1-7, 2021. · Zbl 07415124
[22] Zachary C. Lipton. The Mythos of Model Interpretability.Queue, 16(3):31-57, 2018.
[23] Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems, pages 4768-4777, 2017.
[24] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences.Artificial Intelligence, 267:1-38, 2019. · Zbl 1478.68274
[25] Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana.InterpretML: A Unified Framework for Machine Learning Interpretability.arXiv preprint arXiv:1909.09223, 2019.
[26] Chris Parmer and Nicolas Kruchten.plotly: An open-source, interactive data visualization library for Python, 2020. URLhttps://github.com/plotly/plotly.py.
[27] Fabian Pedregosa, Ga¨el Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and ´Edouard Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85):2825-2830, 2011. · Zbl 1280.68189
[28] Piotr Piatyszek and Przemyslaw Biecek.Arena: universal dashboard for model exploration, 2020. URLhttps://arena.drwhy.ai/.
[29] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier.ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1135-1144, 2016.
[30] Pedro Saleiro, Benedict Kuester, Loren Hinkson, Jesse London, Abby Stevens, Ari Anisfeld, Kit T. Rodolfa, and Rayid Ghani. Aequitas: A Bias and Fairness Audit Toolkit.arXiv preprint arXiv:1811.05577, 2018.
[31] Sahil Verma and Julia Rubin. Fairness Definitions Explained.International Workshop on Software Fairness, pages 1-7, 2018.
[32] Wes McKinney. Data Structures for Statistical Computing in Python.Python in Science Conference, pages 56-61, 2010.
[33] James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fernanda Viegas, and Jimbo Wilson. The What-If Tool: Interactive Probing of Machine Learning Models. IEEE Transactions on Visualization and Computer Graphics, 26(1):56-65, 2020.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.