×

zbMATH — the first resource for mathematics

A note on harmonic number identities, Stirling series and multiple zeta values. (English) Zbl 07085353
MSC:
11M32 Multiple Dirichlet series and zeta functions and multizeta values
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Adamchik, V., On Stirling number and Euler sums, J. Comput. Appl. Math., 79, 119-130, (1997) · Zbl 0877.39001
[2] Arakawa, T.; Kaneko, M., Multiple zeta values, poly-Bernoulli numbers, and related zeta functions, Nagoya Math. J., 153, 189-209, (1999) · Zbl 0932.11055
[3] Bai, Z.-D.; Devroye, L.; Hwang, H.-K.; Tsai, T.-H., Maxima in hypercubes, Random Structures Algorithms, 27, 290-309, (2005) · Zbl 1080.60007
[4] Batir, N., On some combinatorial identities and harmonic sums, Int. J. Number Theory, 13, 1695-1709, (2017) · Zbl 1376.11065
[5] Borwein, J. M.; Bradley, D. M.; Broadhurst, D. J., Evaluation of \(k\)-fold Euler/Zagier sums: A compendium of results for arbitrary \(k\), Electron. J. Combin., 4, 2, 21, (1997) · Zbl 0884.40004
[6] Bradley, D. M., Duality for finite multiple harmonic \(q\)-series, Discrete Math., 300, 44-56, (2004) · Zbl 1085.11041
[7] Candelpergher, B.; Coppo, M., The Arakawa-Kaneko zeta function, Ramanujan J., 22, 153-162, (2010) · Zbl 1230.11106
[8] Candelpergher, B.; Coppo, M., A new class of identities involving Cauchy numbers, harmonic numbers, and zeta values, Ramanujan J., 27, 3, 305-328, (2012) · Zbl 1276.11148
[9] Candelpergher, B.; Coppo, M., Inverse binomial series and values of Arakawa-Kaneko zeta functions, J. Number Theory, 150, 98-119, (2015) · Zbl 1308.11076
[10] Choi, J., Summation formulas involving binomial coefficients, harmonic numbers, and generalized harmonic numbers, Abstr. Appl. Anal., 2014, 10, (2014) · Zbl 1422.11033
[11] Coppo, M., Nouvelles expressions des formules de Hasse et de Hermite pour la fonction zeta d’Hurwitz, Expo. Math., 27, 79-86, (2009) · Zbl 1156.11037
[12] Dilcher, K., Some \(q\)-series identities related to divisor functions, Discrete Math., 145, 83-93, (1995) · Zbl 0834.05005
[13] Flajolet, P.; Sedgewick, R., Mellin transforms and asymptotics: Finite differences and Rices integrals, Theoret. Comput. Sci., 144, 101-124, (1995) · Zbl 0869.68056
[14] Graham, R. L.; Knuth, D. E.; Patashnik, O., Concrete Mathematics, (1994), Addison-Wesley: Addison-Wesley, New York · Zbl 0836.00001
[15] A. Granville, A decomposition of Riemann’s zeta-function. Analytic number theory, London Mathematical Society Lecture Note Series, Vol. 247 (Cambridge University Press, Cambridge, 1997), pp. 95-101. · Zbl 0907.11024
[16] Hoffman, M. E., The algebra of multiple harmonic series, J. Algebra, 194, 477-495, (1997) · Zbl 0881.11067
[17] Hoffman, M. E., Quasi-symmetric functions and mod \(p\) multiple harmonic sums, Kyushu J. Math., 69, 345-366, (2015) · Zbl 1382.11066
[18] Hoffman, M. E., Harmonic-number summation identities, symmetric functions, and multiple zeta values, Ramanujan J., 42, 501-526, (2017) · Zbl 1422.11034
[19] Hoffman, M. E.; Ihara, K., Quasi-shuffle products revisited, J. Algebra, 481, 293-326, (2017) · Zbl 1378.16042
[20] M. E. Hoffman, M. Kuba, M. Levy and G. Louchard, An asymptotic series for an integral, submitted.
[21] Kaneko, M.; Sakata, M., On multiple zeta values of extremal height, Bull. Aust. Math. Soc., 93, 186-193, (2016) · Zbl 1351.11054
[22] Kawashima, G., A class of relations among multiple zeta values, J. Number Theory, 129, 755-788, (2009) · Zbl 1220.11103
[23] Kuba, M., On functions of Arakawa and Kaneko and multiple zeta functions, Appl. Anal. Discrete Math., 4, 45-53, (2010) · Zbl 1299.11064
[24] Kuba, M.; Prodinger, H., A note on Stirling series, Integers, 10, 393-406, (2010) · Zbl 1268.11036
[25] Lyu, Y.-H.; Wang, W. P., Euler sums and Stirling sums, J. Number Theory, 185, 160-193, (2018) · Zbl 1390.11052
[26] Macdonald, I. G., Symmetric Functions and Hall Polynomials, (1995), Clarendon Press: Clarendon Press, Oxford · Zbl 0899.05068
[27] Ohno, Y., A generalization of the duality and the sum formula on the multiple zeta values, J. Number Theory, 74, 39-43, (1999) · Zbl 0920.11063
[28] Ohno, Y.; Zudilin, W., Zeta stars, Commun. Number Theory Phys., 2, 325-347, (2008) · Zbl 1228.11132
[29] Panholzer, A.; Prodinger, H., Computer-free evaluation of an infinite double sum via Euler sums, Sém. Lothar. Combin., 55, 3, (2005) · Zbl 1088.11066
[30] Spieß, J., Some identities involving harmonic numbers, Math. Comp., 55, 839-863, (1990) · Zbl 0724.05005
[31] Vermaseren, J. A. M., Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys. A, 14, 2037-2076, (1999) · Zbl 0939.65032
[32] Yamamoto, S., Interpolation of multiple zeta and zeta-star values, J. Algebra, 385, 102-114, (2013) · Zbl 1336.11062
[33] Young, P., The \(p\)-adic Arakawa-Kaneko zeta functions, J. Number Theory, 155, 13-35, (2015) · Zbl 1320.11086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.