×

Neural field models with threshold noise. (English) Zbl 1356.92021

Summary: The original neural field model of Wilson and Cowan is often interpreted as the averaged behaviour of a network of switch like neural elements with a distribution of switch thresholds, giving rise to the classic sigmoidal population firing-rate function so prevalent in large scale neuronal modelling. In this paper we explore the effects of such threshold noise without recourse to averaging and show that spatial correlations can have a strong effect on the behaviour of waves and patterns in continuum models. Moreover, for a prescribed spatial covariance function we explore the differences in behaviour that can emerge when the underlying stationary distribution is changed from Gaussian to non-Gaussian. For travelling front solutions, in a system with exponentially decaying spatial interactions, we make use of an interface approach to calculate the instantaneous wave speed analytically as a series expansion in the noise strength. From this we find that, for weak noise, the spatially averaged speed depends only on the choice of covariance function and not on the shape of the stationary distribution. For a system with a Mexican-hat spatial connectivity we further find that noise can induce localised bump solutions, and using an interface stability argument show that there can be multiple stable solution branches.

MSC:

92C20 Neural biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J. 1972;12:1-24. · doi:10.1016/S0006-3495(72)86068-5
[2] Bressloff PC. Spatiotemporal dynamics of continuum neural fields. J Phys A. 2012;45:033001. · Zbl 1263.92008 · doi:10.1088/1751-8113/45/3/033001
[3] Coombes S, beim Graben P, Potthast R, Wright JJ, editors. Neural fields: theory and applications. Berlin: Springer; 2014. · Zbl 1291.92004
[4] Webber MA, Bressloff PC. The effects of noise on binocular rivalry waves: a stochastic neural field model. J Stat Mech. 2013;3:P03001. · Zbl 1456.92039
[5] Rankin J, Meso AI, Masson GS, Faugeras O, Kornprobst P. Bifurcation study of a neural field competition model with an application to perceptual switching in motion integration. J Comput Neurosci. 2014;36:193-213. · doi:10.1007/s10827-013-0465-5
[6] Hutt A, Longtin A, Schimansky-Geier L. Additive noise-induced Turing transitions in spatial systems with application to neural fields and the Swift-Hohenberg equation. Physica D. 2008;237:755-73. · Zbl 1152.92003 · doi:10.1016/j.physd.2007.10.013
[7] Touboul J, Hermann G, Faugeras O. Noise-induced behaviors in neural mean field dynamics. SIAM J Appl Dyn Syst. 2012;11:49-81. · Zbl 1235.92016 · doi:10.1137/110832392
[8] Touboul J. Mean-field equations for stochastic firing-rate neural fields with delays: derivation and noise-induced transitions. Physica D. 2012;241:1223-44. · Zbl 1317.92021 · doi:10.1016/j.physd.2012.03.010
[9] Bressloff PC, Webber MA. Front propagation in stochastic neural fields. SIAM J Appl Dyn Syst. 2012;11:708-40. · Zbl 1246.92004 · doi:10.1137/110851031
[10] Bressloff PC. From invasion to extinction in heterogeneous neural fields. J Math Neurosci. 2012;2:6. · Zbl 1291.92024 · doi:10.1186/2190-8567-2-6
[11] Kilpatrick ZP, Ermentrout B. Wandering bumps in stochastic neural fields. SIAM J Appl Dyn Syst. 2013;12:61-94. · Zbl 1278.92007 · doi:10.1137/120877106
[12] Kilpatrick ZP, Faye G. Pulse bifurcations in stochastic neural field. SIAM J Appl Dyn Syst. 2014;13:830-60. · Zbl 1301.92009 · doi:10.1137/140951369
[13] Kuehn C, Riedler MG. Large deviations for nonlocal stochastic neural fields. J Math Neurosci. 2014;4:1. · Zbl 1291.92038 · doi:10.1186/2190-8567-4-1
[14] Poll DB, Kilpatrick ZP. Stochastic motion of bumps in planar neural fields. SIAM J Appl Math. 2015;75:1553-77. · Zbl 1402.92108 · doi:10.1137/140999505
[15] Faugeras O, Inglis J. Stochastic neural field equations: a rigorous footing. J Math Biol. 2015;71:259-300. · Zbl 1322.60086 · doi:10.1007/s00285-014-0807-6
[16] Bressloff PC. Waves in neural media: from single cells to neural fields. New York: Springer; 2014. · Zbl 1296.92005 · doi:10.1007/978-1-4614-8866-8
[17] Inglis J, MacLaurin J. A general framework for stochastic traveling waves and patterns, with application to neural field equations. SIAM J Appl Dyn Syst. 2016;15:195-234. · Zbl 1336.60121 · doi:10.1137/15M102856X
[18] Krüger J, Stannat W. Front propagation in stochastic neural fields: a rigorous mathematical framework. SIAM J Appl Dyn Syst. 2014;13:1293-310. · Zbl 1333.60123 · doi:10.1137/13095094X
[19] Coombes S, Thul R, Laudanski J, Palmer AR, Sumner CJ. Neuronal spike-train responses in the presence of threshold noise. Front Life Sci. 2011;5:91-105. · doi:10.1080/21553769.2011.556016
[20] Braun W, Matthews PC, Thul R. First-passage times in integrate-and-fire neurons with stochastic thresholds. Phys Rev E. 2015;91:052701. · doi:10.1103/PhysRevE.91.052701
[21] Amari S. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern. 1977;27:77-87. · Zbl 0367.92005 · doi:10.1007/BF00337259
[22] Ermentrout GB, McLeod JB. Existence and uniqueness of travelling waves for a neural network. Proc R Soc Edinb. 1993;123A:461-78. · Zbl 0797.35072 · doi:10.1017/S030821050002583X
[23] Coombes S. Waves, bumps and patterns in neural field theories. Biol Cybern. 2005;93:91-108. · Zbl 1116.92012 · doi:10.1007/s00422-005-0574-y
[24] Laing, CR; Gomez, D. (ed.); Geris, L. (ed.), Waves in spatially-disordered neural fields: a case study in uncertainty quantification (2014), Berlin
[25] Shardlow T. Numerical simulation of stochastic PDEs for excitable media. J Comput Appl Math. 2005;175:429-46. · Zbl 1066.65017 · doi:10.1016/j.cam.2004.06.020
[26] Le Maître OP, Knio OM. Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Dordrecht: Springer; 2010. · Zbl 1193.76003 · doi:10.1007/978-90-481-3520-2
[27] Papoulis A, Pillai SU. Probability, random variables and stochastic processes. 4th ed. Boston: McGraw-Hill; 2002.
[28] Dietrich CR, Newsam GN. Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J Sci Comput. 1997;18:1088-107. · Zbl 0890.65149 · doi:10.1137/S1064827592240555
[29] Shinozuka M, Deodatis G. Simulation of stochastic processes by spectral representation. Appl Mech Rev. 1991;44:191-204. · doi:10.1115/1.3119501
[30] Phoon KK, Huang HW, Quek ST. Simulation of strongly non-Gaussian processes using Karhunen-Loeve expansion. Probab Eng Mech. 2005;20:188-98. · doi:10.1016/j.probengmech.2005.05.007
[31] Yamazaki F, Shinozuka M. Digital generation of non-Gaussian stochastic fields. J Eng Mech. 1988;114:1183-97. · Zbl 0655.39001 · doi:10.1061/(ASCE)0733-9399(1988)114:7(1183)
[32] Li LB, Phoon KK, Quek ST. Comparison between Karhunen-Loeve expansion and translation-based simulation of non-Gaussian processes. Comput Struct. 2007;85:264-76. · doi:10.1016/j.compstruc.2006.10.010
[33] Lord GJ, Thümmler V. Computing stochastic traveling waves. SIAM J Sci Comput. 2012;34:B24-B43. · Zbl 1236.35212 · doi:10.1137/100784734
[34] Coombes S, Schmidt H, Bojak I. Interface dynamics in planar neural field models. J Math Neurosci. 2012;2:9. · Zbl 1291.92028 · doi:10.1186/2190-8567-2-9
[35] Bressloff PC, Coombes S. Neural ‘bubble’ dynamics revisited. Cogn Comput. 2013;5:281-94. · doi:10.1007/s12559-013-9214-3
[36] Coombes S, Laing CR, Schmidt H, Svanstedt N, Wyller JA. Waves in random neural media. Discrete Contin Dyn Syst, Ser A. 2012;32:2951-70. · Zbl 1245.45008 · doi:10.3934/dcds.2012.32.2951
[37] Qi Y, Breakspear M, Gong P. Subdiffusive dynamics of bump attractors: mechanisms and functional roles. Neural Comput. 2015;27:255-80. · Zbl 1414.92042 · doi:10.1162/NECO_a_00698
[38] Coombes S, Laing CR. Pulsating fronts in periodically modulated neural field models. Phys Rev E. 2011;83:011912. · doi:10.1103/PhysRevE.83.011912
[39] Laing CR, Troy WC, Gutkin B, Ermentrout GB. Multiple bumps in a neuronal model of working memory. SIAM J Appl Math. 2002;63:62-97. · Zbl 1017.45006 · doi:10.1137/S0036139901389495
[40] Coombes S, Lord GJ, Owen MR. Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. Phys D, Nonlinear Phenom. 2003;178:219-41. · Zbl 1013.92006 · doi:10.1016/S0167-2789(03)00002-2
[41] Rankin J, Avitabile D, Baladron J, Faye G, Lloyd DJ. Continuation of localized coherent structures in nonlocal neural field equations. SIAM J Sci Comput. 2014;36:B70-B93. · Zbl 1312.92015 · doi:10.1137/130918721
[42] Laing, CR; Coombes, S. (ed.); beim Graben, P. (ed.); Potthast, R. (ed.); Wright, JJ (ed.), PDE methods for two-dimensional neural fields (2014), Berlin
[43] Pinto DJ, Ermentrout GB. Spatially structured activity in synaptically coupled neuronal networks: I. Travelling fronts and pulses. SIAM J Appl Math. 2001;62:206-25. · Zbl 1001.92021 · doi:10.1137/S0036139900346453
[44] González-Ramírez LR, Ahmed OJ, Cash SS, Wayne CE, Kramer MA. A biologically constrained, mathematical model of cortical wave propagation preceding seizure termination. PLoS Comput Biol. 2015;11:e1004065. · doi:10.1371/journal.pcbi.1004065
[45] Huang X, Troy WC, Yang Q, Ma H, Laing CR, Schiff SJ, Wu J. Spiral waves in disinhibited mammalian neocortex. J Neurosci. 2004;24:9897-902. · doi:10.1523/JNEUROSCI.2705-04.2004
[46] Jung P, Mayer-Kress G. Spatiotemporal stochastic resonance in excitable media. Phys Rev Lett. 1995;74:2130-3. · doi:10.1103/PhysRevLett.74.2130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.