×

Positive geometries and canonical forms. (English) Zbl 1383.81273

Summary: Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects – the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra – which have been loosely referred to as “positive geometries”. The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. The structures seen in the physical setting of the Amplituhedron are both rigid and rich enough to motivate an investigation of the notions of “positive geometries” and their associated “canonical forms” as objects of study in their own right, in a more general mathematical setting. In this paper we take the first steps in this direction. We begin by giving a precise definition of positive geometries and canonical forms, and introduce two general methods for finding forms for more complicated positive geometries from simpler ones – via “triangulation” on the one hand, and “push-forward” maps between geometries on the other. We present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties, both for the simplest “simplex-like” geometries and the richer “polytope-like” ones. We also illustrate a number of strategies for computing canonical forms for large classes of positive geometries, ranging from a direct determination exploiting knowledge of zeros and poles, to the use of the general triangulation and push-forward methods, to the representation of the form as volume integrals over dual geometries and contour integrals over auxiliary spaces. These methods yield interesting representations for the canonical forms of wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex polytopes.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81U05 \(2\)-body potential quantum scattering theory
53Z05 Applications of differential geometry to physics
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C75 Space-time singularities, cosmic censorship, etc.
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S-matrix, JHEP03 (2010) 020 [arXiv:0907.5418] [INSPIRE]. · Zbl 1271.81098 · doi:10.1007/JHEP03(2010)020
[2] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP05 (2013) 135 [arXiv:0905.1473] [INSPIRE]. · Zbl 1342.81291 · doi:10.1007/JHEP05(2013)135
[3] N. Arkani-Hamed et al., Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge U.K., (2016) [INSPIRE]. · Zbl 1365.81004 · doi:10.1017/CBO9781316091548
[4] N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP10 (2014) 030 [arXiv:1312.2007] [INSPIRE]. · Zbl 1468.81075 · doi:10.1007/JHEP10(2014)030
[5] A. Postnikov, Total positivity, Grassmannians and networks, math/0609764 [INSPIRE].
[6] G. Lusztig, Total positivity in reductive groups, in Lie theory and geometry, Birkhäuser Boston U.S.A., (1994), pg. 531. · Zbl 0845.20034
[7] T. Lam, Totally nonnegative Grassmannian and Grassmann polytopes, arXiv:1506.00603 [INSPIRE]. · Zbl 1506.14103
[8] N. Arkani-Hamed, A. Hodges and J. Trnka, Positive amplitudes in the Amplituhedron, JHEP08 (2015) 030 [arXiv:1412.8478] [INSPIRE]. · Zbl 1388.81166 · doi:10.1007/JHEP08(2015)030
[9] R. Hartshorne, Algebraic geometry, Springer Science & Business Media 52, Springer U.S.A., (2013). · Zbl 0367.14001
[10] P.A. Griffiths, Variations on a theorem of Abel, Invent. Math.35 (1976) 321. · Zbl 0339.14003 · doi:10.1007/BF01390145
[11] A. Knutson, T. Lam and D.E. Speyer, Positroid varieties: juggling and geometry, Compos. Math.149 (2013) 1710. · Zbl 1330.14086 · doi:10.1112/S0010437X13007240
[12] J.S. Scott, Grassmannians and cluster algebras, Proc. Lond. Math. Soc.92 (2006) 345. · Zbl 1088.22009 · doi:10.1112/S0024611505015571
[13] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies 131, Princeton University Press, Princeton U.S.A., (1993).
[14] F. Sottile, Toric ideals, real toric varieties, and the algebraic moment map, Contemp. Math.334 (2003) 225 [math.AG/0212044]. · Zbl 1051.14059
[15] S. Fomin and A. Zelevinsky, Cluster algebras I: foundations, J. Amer. Math. Soc.15 (2002) 497. · Zbl 1021.16017 · doi:10.1090/S0894-0347-01-00385-X
[16] G. Muller, Locally acyclic cluster algebras, Adv. Math.233 (2013) 207. · Zbl 1279.13032 · doi:10.1016/j.aim.2012.10.002
[17] T. Lam and D.E. Speyer, Cohomology of cluster varieties. I. Locally acyclic case, arXiv:1604.06843. · Zbl 1498.13062
[18] K. Rietsch, An algebraic cell decomposition of the nonnegative part of a flag variety, J. Alg.213 (1999) 144. · Zbl 0920.20041 · doi:10.1006/jabr.1998.7665
[19] A. Knutson, T. Lam and D.E. Speyer, Projections of Richardson varieties, J. Reine Angew. Math.2014 (2014) 133. · Zbl 1345.14047 · doi:10.1515/crelle-2012-0045
[20] B. Leclerc, Cluster structures on strata of flag varieties, Adv. Math.300 (2016) 190. · Zbl 1375.13036 · doi:10.1016/j.aim.2016.03.018
[21] G.M. Ziegler, Lectures on polytopes, Springer Science & Business Media 152, Springer U.S.A., (2012).
[22] Y. Bai, S. He and T. Lam, The Amplituhedron and the one-loop Grassmannian measure, JHEP01 (2016) 112 [arXiv:1510.03553] [INSPIRE]. · Zbl 1388.81763 · doi:10.1007/JHEP01(2016)112
[23] N. Arkani-Hamed and J. Trnka, Into the Amplituhedron, JHEP12 (2014) 182 [arXiv:1312.7878] [INSPIRE]. · doi:10.1007/JHEP12(2014)182
[24] S.N. Karp, Sign variation, the Grassmannian, and total positivity, J. Comb. Theor.A 145 (2017) 308. · Zbl 1355.05071 · doi:10.1016/j.jcta.2016.08.003
[25] N. Arkani-Hamed, H. Thomas and J. Trnka, Unwinding the Amplituhedron in binary, arXiv:1704.05069 [INSPIRE]. · Zbl 1384.81130
[26] R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys.B 715 (2005) 499 [hep-th/0412308] [INSPIRE]. · Zbl 1207.81088 · doi:10.1016/j.nuclphysb.2005.02.030
[27] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP01 (2011) 041 [arXiv:1008.2958] [INSPIRE]. · Zbl 1214.81141 · doi:10.1007/JHEP01(2011)041
[28] Y. Bai and S. He, The Amplituhedron from momentum twistor diagrams, JHEP02 (2015) 065 [arXiv:1408.2459] [INSPIRE]. · Zbl 1388.81230 · doi:10.1007/JHEP02(2015)065
[29] S.N. Karp and L.K. Williams, The m = 1 Amplituhedron and cyclic hyperplane arrangements, arXiv:1608.08288 [INSPIRE]. · Zbl 1384.05190
[30] N. Arkani-Hamed, Y. Bai and T. Lam, Towards the dual Amplituhedron, in preparation.
[31] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, U.S.A., (2014). · Zbl 0408.14001
[32] N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Local spacetime physics from the Grassmannian, JHEP01 (2011) 108 [arXiv:0912.3249] [INSPIRE]. · Zbl 1214.81181 · doi:10.1007/JHEP01(2011)108
[33] N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of residues and Grassmannian dualities, JHEP01 (2011) 049 [arXiv:0912.4912] [INSPIRE]. · Zbl 1214.81267 · doi:10.1007/JHEP01(2011)049
[34] F. Cachazo, S. He and E.Y. Yuan, Scattering in three dimensions from rational maps, JHEP10 (2013) 141 [arXiv:1306.2962] [INSPIRE]. · doi:10.1007/JHEP10(2013)141
[35] F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev.D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].
[36] F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett.113 (2014) 171601 [arXiv:1307.2199] [INSPIRE]. · doi:10.1103/PhysRevLett.113.171601
[37] F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP07 (2014) 033 [arXiv:1309.0885] [INSPIRE]. · Zbl 1391.81198 · doi:10.1007/JHEP07(2014)033
[38] P. Filliman, The volume of duals and sections of polytopes, Mathematika39 (1992) 67. · Zbl 0776.52004 · doi:10.1112/S0025579300006860
[39] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Hodges and J. Trnka, A note on polytopes for scattering amplitudes, JHEP04 (2012) 081 [arXiv:1012.6030] [INSPIRE]. · Zbl 1348.81339 · doi:10.1007/JHEP04(2012)081
[40] M.E. Peskin, D.V. Schroeder and E. Martinec, An introduction to quantum field theory, Avalon Publishing, U.S.A., (1995).
[41] L. Ferro, T. Lukowski, A. Orta and M. Parisi, Towards the Amplituhedron volume, JHEP03 (2016) 014 [arXiv:1512.04954] [INSPIRE]. · Zbl 1388.81315 · doi:10.1007/JHEP03(2016)014
[42] M. Brion and M. Vergne, Arrangement of hyperplanes. I: rational functions and Jeffrey-Kirwan residue, Ann. Sci. École Normale Sup.32 (1999) 715. · Zbl 0945.32003
[43] V.V. Batyrev and Y. Tschinkel, Manin’s conjecture for toric varieties, J. Alg. Geom.7 (1998) 15. · Zbl 0946.14009
[44] G.M. Ziegler, Nonrational configurations, polytopes, and surfaces, Math. Intell.30 (2008) 36. · Zbl 1210.00047 · doi:10.1007/BF02985377
[45] K. Aomoto, Addition theorem of Abel type for hyper-logarithms, Nagoya Math. J.88 (1982) 55. · Zbl 0545.33014 · doi:10.1017/S0027763000020092
[46] N. Arkani-Hamed and E. Yuan, Geometry and algebra of one loop Feynman integrals, in preparation.
[47] L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Spectral parameters for scattering amplitudes in N = 4 super Yang-Mills theory, JHEP01 (2014) 094 [arXiv:1308.3494] [INSPIRE]. · Zbl 1333.81398 · doi:10.1007/JHEP01(2014)094
[48] A.G. Khovanskiĭ, Fewnomials, Translations of Mathematical Monographs 88, American Mathematical Society, U.S.A., (1991).
[49] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, Ann. Math.79 (1964) 109. · Zbl 0122.38603 · doi:10.2307/1970486
[50] A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler, Oriented matroids, Encyclopedia of Mathematics and Its Applications 46, Cambridge University Press, Cambridge U.K., (1999). · Zbl 0944.52006
[51] B. Khesin and A. Rosly, Polar homology and holomorphic bundles, Phil. Trans. Roy. Soc. Lond.A 359 (2001) 1413 [math/0102152] [INSPIRE]. · Zbl 0996.32012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.