zbMATH — the first resource for mathematics

\(h\)-Bernstein basis functions over a triangular domain. (English) Zbl 07200766
Summary: In this paper, we introduce and study new \(h\)-Bernstein basis functions over a triangular domain. In particular, after defining the \(h\)-Bernstein polynomial functions of degree \(n\), we prove their algebraic and geometric properties, such as partition of unity and degree elevation and we show that they form a basis for the space of polynomials of total degree less than or equal to \(n\) on a triangle. Then, we propose the \(h\)-de Casteljau algorithm and we prove the Marsden identity.
65D Numerical approximation and computational geometry (primarily algorithms)
Full Text: DOI
[1] Barnhill, R. E., Surfaces in computer aided geometric design: a survey with new results, Comput. Aided Geom. Des., 2, 1-17 (1985) · Zbl 0597.65001
[2] Farin, G., Triangular Bernstein-Bézier patches, Comput. Aided Geom. Des., 3, 83-127 (1986)
[3] Goldman, R. R., Pólya’s urn model and computer aided geometric design, SIAM J. Algebraic Discrete Methods, 6, 1-28 (1985) · Zbl 0602.68103
[4] Goldman, R.; Barry, P., Shape parameter deletion for Pólya’ curves, Numer. Algorithms, 1, 121-137 (1991) · Zbl 0749.41009
[5] Jegdić, I., Algorithms and identities for bivariate \(( h_1, h_2)\)-blossoming, Int. J. Appl. Math., 30, 321-343 (2017)
[6] Lai, M. J.; Schumaker, L. L., Spline Functions on Triangulations (2007), Cambridge University Press · Zbl 1185.41001
[7] Prautzsch, H.; Boehm, W.; Paluszny, M., Bézier and B-Spline Tecniques (2002), Springer-Verlag: Springer-Verlag Berlin, Heidelberg
[8] Ramshaw, L., Blossoms are polar forms, Comput. Aided Geom. Des., 6, 323-358 (1989) · Zbl 0705.65008
[9] Seidel, H., An introduction to polar forms, IEEE Comput. Graph. Appl., 13, 38-46 (1993)
[10] Simeonov, P.; Zafiris, V.; Goldman, R., h-Blossoming: a new approach to algorithms and identities for h-Bernstein bases and h-Bézier curves, Comput. Aided Geom. Des., 28, 549-565 (2011) · Zbl 1246.65034
[11] Stancu, D., Approximation of functions by a new class of linear polynomial operators, Rev. Roum. Math. Pures Appl., 13, 1173-1194 (1968) · Zbl 0167.05001
[12] Stancu, D., Generalized Bernstein approximating operators, (Itinerant Seminar on Functional Equations, Approximation and Convexity (1984), Univ. “Babes-Bolyai”: Univ. “Babes-Bolyai” Cluj-Napoca), 185-192
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.