Dagnino, C.; Demichelis, V.; Lamberti, Paola A nodal spline collocation method for the solution of Cauchy singular integral equations. (English) Zbl 1176.65153 JNAIAM, J. Numer. Anal. Ind. Appl. Math. 3, No. 3-4, 211-220 (2008). The authors present a collocation method, based on optimal nodal spline approximation, for solving the following singular integral equation with constant coefficients \[ aw_{\alpha ,\beta } (x)f(x) + \frac{b}{\pi }\int_{ - 1}^1 {\frac{w_{\alpha ,\beta } (t)f(t)}{t - x}dt} + \int_{ - 1}^1 {w_{\alpha ,\beta } (t)k(x,t)f(t)dt = g(x),\quad - 1 < x < 1}, \]where the first integral is defined in the sense of Cauchy principal value, \(k\) is a Fredholm kernel and \(w_{\alpha ,\beta } \) is the Jacobi weight function \[ w_{\alpha ,\beta } (t) = (1 - t)^\alpha (1 + t)^\beta ,\,\,\alpha ,\beta > - 1. \] Reviewer: Temuri A. Jangveladze (Tbilisi) Cited in 1 ReviewCited in 4 Documents MSC: 65R20 Numerical methods for integral equations 45E05 Integral equations with kernels of Cauchy type Keywords:Nodal splines; Cauchy singular integral equations; collocation method; Cauchy principal value; Fredholm kernel; Jacobi weight function PDF BibTeX XML Cite \textit{C. Dagnino} et al., JNAIAM, J. Numer. Anal. Ind. Appl. Math. 3, No. 3--4, 211--220 (2008; Zbl 1176.65153)