×

zbMATH — the first resource for mathematics

Scheme for generating entangled states of two field modes in a cavity. (English) Zbl 1117.81031
Summary: This paper considers a two-level atom interacting with two cavity modes with equal frequencies. Applying a unitary transformation, the system reduces to the analytically solvable Jaynes-Cummings model. For some particular field states, coherent and squeezed states, the transformation between the two bare bases, related by the unitary transformation, becomes particularly simple. It is shown how to generate (the highly non-classical) entangled coherent states of the two modes, both in the zero and large detuning cases. An advantage of the zero detuning case is that the preparation is deterministic and no atomic measurement is needed. For the large detuning situation, a measurement is required, leaving the field in either of two orthogonal entangled coherent states.
MSC:
81P68 Quantum computation
81V80 Quantum optics
81R30 Coherent states
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nielsen MA, Quantum Computing and Quantum Information (2000)
[2] Esteve D, Quantum Entanglement and Information Processing (2004)
[3] Englert B-G, Fortschr. Phys 46 (897) (1998)
[4] Bermann PR, Cavity Quantum Electrodynamics, Advances in Atomic, Molecular and Optical Physics, 2. ed. (1994)
[5] Jaynes ET, Proc. IEEE 51 (89) (1963)
[6] Raimond JM, Atoms and Cavities: The Birth of a Schrödinger Cat of the Radiation Field (1999)
[7] Bužek V, Phys. Rev. A 45 (8190) (1992)
[8] Wang X, Phys. Rev. A 65 (012303) (2001)
[9] Tombesi P, J. Opt. Soc. Am. B 4 (1700) (1986)
[10] van Enk SJ, Phys. Rev. Lett. 91 (017902) (2003)
[11] van Enk SJ, Phys. Rev. A 64 (022313) (2001)
[12] Chai CL, Phys. Rev. A 46 (7187) (1992)
[13] Jeong H, Phys. Rev. A 64 (052308) (2001)
[14] Wilson D, J. Mod. Optics 49 (851) (2002) · Zbl 1043.81010
[15] Glancy S, Phys. Rev. A 70 (022317) (2004)
[16] Song S, Phys. Rev. A 41 (5261) (1990)
[17] York B, Phys. Rev. Lett. 57 (13) (1986)
[18] Gerry CC, Phys. Rev. A 55 (2478) (1997)
[19] Guo GC, Optics Commun. 133 (142) (1997)
[20] Gerry CC, Phys. Rev. A 54 (2529) (1996)
[21] Gerry CC, Phys. Rev. A 54 (2529) (1996)
[22] Larson J, J. Mod. Optics 51 (1691) (2004)
[23] Larson J, Phys. Rev. A 71 (053814) (2005)
[24] Auffeves A, , Phys. Rev. Lett. 91 (230405) (2003)
[25] Meunier T, , Phys. Rev. Lett. 94 (113601) (2005)
[26] Brune M, Phys. Rev. Lett 77 (4887) (1996)
[27] Wildfeur C, Phys. Rev. A 67 (053801) (2003)
[28] Mattinson F, J. Mod. Optics 48 (889) (2001) · Zbl 1007.81077
[29] Marchiolli MA, J. Phys. A 36 (12275) (2003) · Zbl 1067.81528
[30] Dutra SM, Phys. Rev. A 48 (3168) (1993)
[31] Gea-Banacloche J, Phys. Rev. A 44 (5913) (1991)
[32] DOI: 10.1017/CBO9781139644105
[33] Rekdal PK, J. Mod. Optics 51 (75) (2004) · Zbl 1073.81702
[34] Phoenix SJD, Ann. Phys. 186 (381) (1988)
[35] Aleaxanian M, Phys. Rev. A 52 (2218) (1995)
[36] Klimov AB, Phys. Rev. A 61 (063802) (2000)
[37] Barnett SM, Methods in Theoretical Quantum Optics (2003)
[38] Walls DF, Phys. Rev. A 31 (2403) (1985)
[39] Clausen J, Phys. Rev. A 66 (062303) (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.