×

zbMATH — the first resource for mathematics

On a subclass of harmonic multivalent functions defined by a certain linear operator. (English) Zbl 1444.30006
Summary: In this paper, we introduce and study a new subclass of \(p\)-valent harmonic functions defined by modified operator and obtain the basic properties such as coefficient characterization, distortion properties, extreme points, convolution properties, convex combination and also we apply integral operator for this class.
MSC:
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F. M. Al-Oboudi,On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci.,(25-28)(2004), 1429-1436. · Zbl 1072.30009
[2] S. D. Bernardi,Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135(1969), 429-446. · Zbl 0172.09703
[3] N. E. Cho and T. H. Kim,Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc.,40(3)(2003), 399-410. · Zbl 1032.30007
[4] N. E. Cho and H. M. Srivastava,Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling,37(1- 2)(2003), 39-49. · Zbl 1050.30007
[5] J. Clunie and T. Sheil-Small,Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math.,9(3)(1984), 3-25. · Zbl 0506.30007
[6] H. E. Darwish, A. Y. Lashin and S. M. Soileh,Subclass of harmonic starlike functions associated with Salagean derivative, Matematiche,69(2)(2014), 147-158. · Zbl 1317.30016
[7] K. K. Dixit and S. Porwal,A subclass of harmonic univalent functions with positive coefficients, Tamkang J. Math.,41(3)(2010), 261-269. · Zbl 1206.30016
[8] R. M. El-Ashwah and M. K. Aouf,Differential subordination and superordination for certain subclasses of p-valent functions, Math. Comput. Modelling,51(5-6)(2010), 349-360. · Zbl 1190.30013
[9] J. M. Jahangiri and O. P. Ahuja,Multivalent harmonic starlike functions, Ann. Univ. Marie Curie-Sklodowska Sect. A.55(2001), 1-13. · Zbl 1019.30010
[10] J. M. Jahangiri, Y. C. Kim and H. M. Srivastava,Construction of a certain class of harmonic close-to-convex functions associated with the Alexander integral transform, Integral Transforms Spec. Funct.,14(2003), 237-242. · Zbl 1038.30010
[11] J. M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya,Salagean type harmonic univalent functions, Southwest J. Pure Appl. Math.,(2)(2002), 77-82. · Zbl 1021.30013
[12] A. Y. Lashin,On certain subclass of harmonic starlike functions, Abstr. Appl. Anal., (2014), Art. ID 467929, 7 pp, · Zbl 07022435
[13] R. J. Libera,Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16(1965), 755-758. · Zbl 0158.07702
[14] A. O. Mostafa, M. K. Aouf, A. Shamandy and E. A. Adwan,Subclass of harmonic univalent functions defined by modified Cata’s operator, Acta Univ. Apulensis Math. Inform.,39(2014), 249-261. · Zbl 1340.30054
[15] G. S. Salagean,Subclasses of univalent functions, Complex Analysis—fifth RomanianFinnish seminar, 362-372, Lecture Notes in Math.1013, Springer, Berlin, 1983.
[16] A. Uralegaddi and C. Somanatha,Certain classes of univalent functions, Current Topics in Analytic Function Theory(edited by H. M. Srivastava and S. Owa), 371-374, World Scientific Publishing Co., Singaporr, New Jersey, London, Hong Kong,1992. · Zbl 0987.30508
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.