×

Smeared Coulomb potential orbitals. I: Asymptotic expansion. (English) Zbl 1466.81141

Summary: We consider an 1-electron model Hamiltonian, whose potential energy corresponds to the Coulomb potential of an infinite wire with charge \(Z\) distributed according to a Gaussian function. The time independent Schrödinger equation for this Hamiltonian is solved perturbationally in the asymptotic limit of small amplitude vibration (Gaussian function width close to zero). We propose to use the naturally polarized functions so-obtained, as orbital basis sets for quantum chemical calculations. In particular, they should be well suited to perform electron-nucleus mean field configuration interaction calculations. Since the free-parameters of the model have the remarkable property to factorize the perturbative corrections to the eigenfunctions, these corrective part in factor can be simply added as additional functions to standard basis sets, leaving it to the molecular orbital calculation to optimize the free parameters within molecular orbital coefficients.

MSC:

81V45 Atomic physics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81Q15 Perturbation theories for operators and differential equations in quantum theory
81V55 Molecular physics

Software:

MOLPRO; SMILES
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cassam-Chenaï, P.; Jayatilaka, D.; Chandler, GS, J. Chim. Phys., 95, 2241 (1998) · doi:10.1051/jcp:1998366
[2] Boys, SF; Bernardi, F., Mol. Phys., 19, 553 (1970) · doi:10.1080/00268977000101561
[3] Guseinov, II; Sahin, E.; Erturk, M., Mol. Phys., 112, 35 (2014) · doi:10.1080/00268976.2013.795665
[4] Zener, C., Phys. Rev., 36, 51 (1930) · JFM 56.1313.01 · doi:10.1103/PhysRev.36.51
[5] Slater, JC, Phys. Rev., 36, 57 (1930) · JFM 56.1313.02 · doi:10.1103/PhysRev.36.57
[6] Filter, E.; Steinborn, EO, Phys. Rev. A, 18, 1 (1978) · doi:10.1103/PhysRevA.18.1
[7] Shull, H.; Löwdin, P-O, J. Chem. Phys., 30, 617 (1959) · doi:10.1063/1.1730019
[8] Avery, JE, Adv. Quantum Chem., 67, 129-151 (2013) · doi:10.1016/B978-0-12-411544-6.00006-6
[9] Avery, JE; Avery, JS, Adv. Quantum Chem., 70, 265-324 (2015) · doi:10.1016/bs.aiq.2014.07.004
[10] Avery, JE; Avery, JS, Adva. Quantum Chem., 76, 133-146 (2018) · doi:10.1016/bs.aiq.2017.07.005
[11] Cassam-Chenaï, P.; Suo, B.; Liu, W., Phys. Rev. A, 92, 012502 (2015) · doi:10.1103/PhysRevA.92.012502
[12] Cassam-Chenaï, P.; Suo, B.; Liu, W., Theor. Chim. Acta., 136, 52 (2017) · doi:10.1007/s00214-017-2081-3
[13] H. Taşeli, İnci M. Erhan, Ö. Uǧur, J. Math. Chem. 32, 323 (2002) · Zbl 1027.81007
[14] J. Fernández Rico, I. Ema, R. Lopez, G. Ramírez, K. Ishida, Recent advances in computational chemistry: molecular integrals over slater orbitals 5-SMILES: a package for molecular calculations with STOsoftware, third generation, 145 (2008). (Telhat Ozdogan and Maria Belen Ruiz, editors, Transworld Research Network)
[15] H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K.R. Shamasundar, T.B. Adler, R.D. Amos, S.J. Bennie, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, E.Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, S.J.R. Lee, Y. Liu, A.W. Lloyd, Q. Ma, R.A. Mata, A.J. May, S. J. McNicholas, W. Meyer, III, T.F. M., M.E. Mura, A. Nicklass, D.P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, M. Welborn, MOLPRO, version 2018.2, a package of ab initio programs. 2018; see http://www.molpro.net
[16] Shaw, R., Int. J. Quantum Chem., 120, e26264 (2020) · doi:10.1002/qua.26264
[17] Liu, W.; Hong, G.; Dai, D.; Li, L.; Dolg, M., Theor. Chem. Acc., 96, 75 (1997) · doi:10.1007/s002140050207
[18] Liu, W.; Wang, F.; Li, L., J. Theor. Comput. Chem., 2, 257 (2003) · doi:10.1142/S0219633603000471
[19] W. Liu, F. Wang, L. Li, in Recent Advances in Relativistic Molecular Theory, Recent Advances in Computational Chemistry, vol. 5, ed. by K. Hirao, Y. Ishikawa (World Scientific, Singapore, 2004), p. 257 · Zbl 1378.81008
[20] P. Cassam-Chenaï, B. Suo, Smeared Coulomb potential orbitals: II- Application to EN-MFCI calculations (to be published)
[21] Caffarel, M., J. Chem. Phys., 151, 064101 (2019) · doi:10.1063/1.5114703
[22] Sahin, E.; Ozdogan, T.; Orbay, M., J. Math. Chem., 55, 1849 (2017) · Zbl 1381.33001 · doi:10.1007/s10910-017-0764-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.