Kim, Ji Young; Lee, Young Min Sums of distinct integral squares in \(\mathbb {Q}(\sqrt {2})\), \(\mathbb {Q}(\sqrt {3})\) and \(\mathbb {Q}(\sqrt {6})\). (English) Zbl 1268.11053 Bull. Aust. Math. Soc. 85, No. 1, 1-10 (2012). In this work, the authors derive some algebraic relations involving “Sums of distinct integral squares in \(\mathbb {Q}(\sqrt {2})\), \(\mathbb {Q}(\sqrt {3})\) and \(\mathbb {Q}(\sqrt {6})\)”. Reviewer: Ahmet Tekcan (Bursa) Cited in 2 Documents MSC: 11E25 Sums of squares and representations by other particular quadratic forms 11R11 Quadratic extensions Keywords:squares; sums of squares PDF BibTeX XML Cite \textit{J. Y. Kim} and \textit{Y. M. Lee}, Bull. Aust. Math. Soc. 85, No. 1, 1--10 (2012; Zbl 1268.11053) Full Text: DOI References: [1] Park, C. R. Math. Acad. Sci. Paris 346 pp 723– (2008) · Zbl 1145.11032 · doi:10.1016/j.crma.2008.05.008 [2] DOI: 10.1007/BF02940744 · Zbl 0025.01602 · doi:10.1007/BF02940744 [3] DOI: 10.1007/BF01448854 · JFM 54.0407.01 · doi:10.1007/BF01448854 [4] DOI: 10.1090/S0002-9947-1962-0142522-8 · doi:10.1090/S0002-9947-1962-0142522-8 [5] DOI: 10.2307/1969026 · Zbl 0063.07010 · doi:10.2307/1969026 [6] DOI: 10.2307/2372737 · Zbl 0097.03103 · doi:10.2307/2372737 [7] DOI: 10.1007/BF01386378 · Zbl 0092.27603 · doi:10.1007/BF01386378 [8] DOI: 10.1007/BF01181594 · Zbl 0031.20301 · doi:10.1007/BF01181594 [9] DOI: 10.2307/2372719 · Zbl 0100.03201 · doi:10.2307/2372719 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.