×

zbMATH — the first resource for mathematics

Sums of distinct integral squares in \(\mathbb {Q}(\sqrt {2})\), \(\mathbb {Q}(\sqrt {3})\) and \(\mathbb {Q}(\sqrt {6})\). (English) Zbl 1268.11053
In this work, the authors derive some algebraic relations involving “Sums of distinct integral squares in \(\mathbb {Q}(\sqrt {2})\), \(\mathbb {Q}(\sqrt {3})\) and \(\mathbb {Q}(\sqrt {6})\)”.

MSC:
11E25 Sums of squares and representations by other particular quadratic forms
11R11 Quadratic extensions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Park, C. R. Math. Acad. Sci. Paris 346 pp 723– (2008) · Zbl 1145.11032 · doi:10.1016/j.crma.2008.05.008
[2] DOI: 10.1007/BF02940744 · Zbl 0025.01602 · doi:10.1007/BF02940744
[3] DOI: 10.1007/BF01448854 · JFM 54.0407.01 · doi:10.1007/BF01448854
[4] DOI: 10.1090/S0002-9947-1962-0142522-8 · doi:10.1090/S0002-9947-1962-0142522-8
[5] DOI: 10.2307/1969026 · Zbl 0063.07010 · doi:10.2307/1969026
[6] DOI: 10.2307/2372737 · Zbl 0097.03103 · doi:10.2307/2372737
[7] DOI: 10.1007/BF01386378 · Zbl 0092.27603 · doi:10.1007/BF01386378
[8] DOI: 10.1007/BF01181594 · Zbl 0031.20301 · doi:10.1007/BF01181594
[9] DOI: 10.2307/2372719 · Zbl 0100.03201 · doi:10.2307/2372719
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.