zbMATH — the first resource for mathematics

An efficient three-dimensional adaptive quasicontinuum method using variable-node elements. (English) Zbl 1169.82308
Summary: A new quasicontinuum (QC) implementation using the so-called “variable-node finite elements” is reported in this work. Tetrahedral elements, which have been exclusively utilized for the conventional QC are replaced by hexahedral elements in conjunction with the so-called variable-node elements. This enables an effective adaptive mesh refinement in QC, leading to fast and efficient simulations compared with the conventional QC. To confirm the solution accuracy, comparison is made for a nanoindentation problem with a molecular dynamics simulation as well as a molecular mechanics solution. Further examples of nanoindentation are shown and discussed to demonstrate the effectiveness of the present scheme.

82B80 Numerical methods in equilibrium statistical mechanics (MSC2010)
81V45 Atomic physics
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
L-BFGS; TetGen
Full Text: DOI
[1] Passerone, D.; Parrinello, M., Action-derived molecular dynamics in the study of rare events, Phys. rev. lett., 87, 108302-108305, (2001)
[2] Lee, I.-H.; Lee, J.; Lee, S., Kinetic energy control in action-derived molecular dynamics simulations, Phys. rev. B, 68, 64303-64310, (2003)
[3] Mills, G.; Jonsson, H., Quantum and thermal effects in H2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems, Phys. rev. lett., 72, 1124-1127, (1994)
[4] Tang, S.; Hou, T.Y.; Liu, W.K., A pseudo-spectral multiscale method: interfacial conditions and coarse grid equations, J. comput. phys., 213, 57-85, (2006) · Zbl 1089.65110
[5] Tadmor, E.B.; Ortiz, M.; Philips, R., Quasicontinuum analysis of defects in solids, Philos. mag. A, 73, 1529-1563, (1996)
[6] Miller, R.E.; Tadmor, E.B., The quasicontinuum method: overview, applications and current directions, J. computer-aided mater. design, 9, 203-239, (2002)
[7] Shenoy, V.B.; Miller, R.; Tadmor, E.B.; Rodney, D.; Philips, R.; Ortiz, M., Nucleation of dislocations beneath a plane strain indenter, J. mech. phys. solids, 48, 649-673, (2000) · Zbl 1007.74060
[8] Knap, J.; Ortiz, M., An analysis of the quasicontinuum method, J. mech. phys. solids, 49, 1899-1923, (2001) · Zbl 1002.74008
[9] Park, J.Y.; Im, S., An adaptive nonlocal quasicontinuum for deformations of curved crystalline structures, Phys. rev. B, 77, 184109, (2008)
[10] Shenoy, V.B.; Miller, R.; Tadmor, E.B.; Phillips, R.; Ortiz, M., An adaptive finite element approach to atomic-scale mechanics – the quasicontinuum method, J. mech. phys. solids, 47, 611-642, (1998) · Zbl 0982.74071
[11] Lee, D.T.; Schachter, B.J., Two algorithms for constructing a Delaunay triangulation, Int. J. comput. inform. sci., 9, 219-242, (1980) · Zbl 0441.68047
[12] Cho, Y.-S.; Im, S., MLS-based variable-node elements compatible with quadratic interpolation. part I: formulation and application for non-matching meshes, Int. J. numer. methods eng., 65, 494-516, (2006) · Zbl 1179.74139
[13] Cho, Y.-S.; Jun, S.; Im, S.; Kim, H.-G., An improved interface element with variable nodes for non-matching finite element meshes, Comput. methods appl. mech. eng., 194, 3022-3046, (2005) · Zbl 1092.74048
[14] Lim, J.H.; Im, S.; Cho, Y.-S., Variable-node finite elements for non-matching meshes by means of MLS (moving least square) scheme, Int. J. numer. methods eng., 72, 858-882, (2007)
[15] Lim, J.H.; Im, S.; Cho, Y.-S., MLS (moving least square)-based finite elements for three-dimensional non-matching meshes and adaptive mesh refinement, Comput. methods appl. mech. eng., 196, 2216-2228, (2007) · Zbl 1173.74432
[16] Kim, J.H.; Lim, J.H.; Lee, J.H.; Im, S., A new computational approach to contact mechanics using variable-node finite elements, Int. J. numer. methods eng., 73, 1966-1988, (2008) · Zbl 1195.74180
[17] Lim, J.H.; Im, S., (4+n)-noded MLS (moving least square)-based finite elements for mesh gradation, Struct. eng. mech., 25, 91-106, (2007)
[18] Choi, C.-K.; Lee, N.-H., A 3-D adaptive mesh refinement using variable-node solid transition elements, Int. J. numer. methods eng., 39, 1585-1606, (1996) · Zbl 0865.73058
[19] Fischer-Cripps, A.C., Nanoindentation, (2002), Springer-Verlag
[20] Carpick, R.W.; Salmeron, M., Scratching the surface: fundamental investigations of tribology with atomic force microscopy, Chem. rev., 97, 1163-1194, (1997)
[21] Komanduri, R.; Chandrasekaran, N.; Raff, L.M., MD simulation of indentation and scratching of single crystal aluminum, Wear, 240, 113-143, (2000)
[22] Jun, S.; Lee, Y.; Kim, S.Y.; Im, S., Large-scale molecular dynamics simulations of AI(111) nanoscratching, Nanotechnology, 15, 1169-1174, (2004)
[23] Lee, Y.; Park, J.Y.; Kim, S.Y.; Jun, S.; Im, S., Atomistic simulations of incipient plasticity under al(111) nanoindentation, Mech. mater., 37, 1035-1048, (2005)
[24] Lilleodden, E.T.; Zimmerman, J.A.; Foiles, S.M.; Nix, W.D., Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation, J. mech. phys. solids, 51, 901-920, (2003) · Zbl 1038.74678
[25] Feichtinger, D.; Derlet, P.M.; Van Swygenhoven, H., Atomistic simulations of spherical indentations in nanocrystalline gold, Phys. rev. B, 67, 024113, (2003)
[26] Ma, X.; Yang, W., Molecular dynamics simulation on burst and arrest of stacking faults in nanocrystalline cu under nanoindentation, Nanotechnology, 14, 1208-1215, (2003)
[27] Smith, G.S.; Tadmor, E.B.; Bernstein, N.; Kaxiras, E., Multiscale simulations of silicon nanoindentation, Acta mater., 49, 4089-4101, (2001)
[28] Picu, R.C., Atomistic-continuum simulation of nano-indentation in molybdenum, J. computer-aided mater. design, 7, 77-87, (2000)
[29] Shan, D.; Yuan, L.; Guo, B., Multiscale simulation of surface step effects on nanoindentation, Mat. sci. eng. A, 412, 264-270, (2005)
[30] Knap, J.; Ortiz, M., Effect of indenter-radius size on au(001) nanoindentation, Phys. rev. lett., 90, 226102, (2003)
[31] Li, J.; Van Vliet, K.J.; Zhu, T.; Yip, S.; Suresh, S., Atomistic mechanics governing elastic limit and incipient plasticity in crystals, Nature, 418, 307-310, (2002)
[32] Hughes, T.J.R., The finite element method, (1987), Prentice Hall New Jersey
[33] Daw, M.S.; Baskes, M.I., Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Phys. rev. B, 29, 6443-6453, (1984)
[34] Cai, J.; Ye, Y.Y., Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys, Phys. rev. B, 54, 8398-8412, (1996)
[35] Nocedal, J., Updating quasi-Newton matrices with limited storage, Math. comput., 24, 773-782, (1980) · Zbl 0464.65037
[36] Liu, D.C.; Nocedal, J., On the limited memory BFGS method for large scale optimization, Math. program., 45, 503-528, (1989) · Zbl 0696.90048
[37] H. Si, TetGen, A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator, 2007. This code is linked, <http://tetgen.berlios.de/>.
[38] Kelchner, C.L.; Plimpton, S.J.; Hamilton, J.C., Dislocation nucleation and defect structure during surface indentation, J. phys. rev. B, 58, 11085-11088, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.