×

From the weak Bruhat order to crystal posets. (English) Zbl 1371.05315

Summary: We investigate the ways in which fundamental properties of the weak Bruhat order on a Weyl group can be lifted (or not) to a corresponding highest weight crystal graph, viewed as a partially ordered set; the latter projects to the weak order via the key map. First, a crystal theoretic analogue of the statement that any two reduced expressions for the same Coxeter group element are related by Coxeter moves is proven for all lower intervals \([\hat{0},v]\) in a simply or doubly laced crystal. On the other hand, it is shown that no finite set of moves exists, even in type \(A\), for arbitrary crystal graph intervals. In fact, it is shown that there are relations of arbitrarily high degree amongst crystal operators that are not implied by lower degree relations. Second, for crystals associated to Kac-Moody algebras it is shown for lower intervals that the Möbius function is always 0 or \(\pm1\), and in finite type this is also proven for upper intervals, with a precise formula given in each case. Moreover, the order complex for each of these intervals is proven to be homotopy equivalent to a ball or to a sphere of some dimension, despite often not being shellable. For general intervals, examples are constructed with arbitrarily large Möbius function, again even in type \(A\). Any interval having Möbius function other than 0 or \(\pm1\) is shown to contain within it a relation amongst crystal operators that is not implied by the relations giving rise to the local structure of the crystal, making precise a tight relationship between the Möbius function and these somewhat unexpected relations appearing in crystals. New properties of the key map are also derived. The key is shown to be determined entirely by the edge-colored poset-theoretic structure of the crystal, and a recursive algorithm is given for calculating it. In finite types, the fiber of the longest element of any parabolic subgroup of the Weyl group is also proven to have a unique minimal and a unique maximal element; this property fails for more general elements of the Weyl group.

MSC:

05E10 Combinatorial aspects of representation theory
20G05 Representation theory for linear algebraic groups
20G42 Quantum groups (quantized function algebras) and their representations
57N60 Cellularity in topological manifolds
20F55 Reflection and Coxeter groups (group-theoretic aspects)
06A07 Combinatorics of partially ordered sets
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Björner, A.: Shellable and Cohen-Macaulay partially ordered sets. Trans. Am. Math. Soc. 260, 159-183 (1980) · Zbl 0441.06002 · doi:10.2307/1999881
[2] Björner, A.: Orderings of Coxeter Groups, Combinatorics and Algebra (Boulder, CO, 1983), 175-195, Contemp. Math. 34, Am. Math. Soc, Providence, RI (1984) · Zbl 0256.06002
[3] Björner, A., Brenti, F.: Combinatorics of Coxeter Groups, Graduate Texts in Mathematics 231. Springer, Berlin (2005) · Zbl 1110.05001
[4] Björner, A., Wachs, M.: On lexicograhpically shellable posets. Trans. Am. Math. Soc. 277, 323-341 (1983) · Zbl 0514.05009 · doi:10.2307/1999359
[5] Danilov, V., Karzanov, A., Koshevoy, G.: Combinatorics of regular \[A_2\] A2-crystals. J. Algebra 310, 218-234 (2007) · Zbl 1158.17004 · doi:10.1016/j.jalgebra.2006.11.035
[6] Danilov, V., Karzanov, A., Koshevoy, G.: \[B_2\] B2-crystals: axioms, structure, models. J. Combin. Theory Ser. A 116, 265-289 (2009) · Zbl 1229.05286 · doi:10.1016/j.jcta.2008.06.002
[7] Eagon, J., Reiner, V.: Resolutions of Stanley-Reisner rings and Alexander duality. J. Pure Appl. Algebra 130, 265-275 (1998) · Zbl 0941.13016 · doi:10.1016/S0022-4049(97)00097-2
[8] Edelman, P.: A partial order on the regions of \[\mathbb{R}^nRn\] dissected by hyperplanes. Trans. Am. Math. Soc. 283(2), 617-631 (1984) · Zbl 0555.06003
[9] Edelman, P., Walker, J.: The homotopy type of hyperplane posets. Proc. Am. Math. Soc. 94, 221-225 (1985) · Zbl 0565.06001 · doi:10.1090/S0002-9939-1985-0784167-3
[10] Garsia, A.: The saga of reduced factorizations of elements of the symmetric group, Publications du Laboratoire de Combinatoire et d’Informatique Mathématique, 29, Montreal (2002) · Zbl 1047.17007
[11] Hersh, P., Mészáros, K.: SB-labelings and posets with each interval homotopy equivalent to a sphere or a ball (2014). arXiv:1407.5311 · Zbl 1369.05180
[12] Herzog, J., Reiner, V., Welker, V.: The Koszul property in affine semigroup rings. Pac. J. Math. 186, 39-65 (1998) · Zbl 0937.20041 · doi:10.2140/pjm.1998.186.39
[13] Hong, J., Kang, S.-J.: Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, vol. 42. Am. Math. Soc. (2000) · Zbl 1314.05224
[14] Kashiwara, M.: The crystal base and Littelmann’s refined Demazure character formula. Duke Math J. 71, 839-858 (1993) · Zbl 0794.17008 · doi:10.1215/S0012-7094-93-07131-1
[15] Kashiwara, M.: Crystal bases of modified quantized enveloping algebra. Duke Math. J. 73, 383-414 (1994) · Zbl 0794.17009 · doi:10.1215/S0012-7094-94-07317-1
[16] Lascoux, A., Schützenberger, M.-P.: Keys and standard bases, Tableaux and Invariant Theory, D. Stanton, IMA Volumes in Math and its Applications, Vol. 19, 1990, Southend on Sea, UK, pp. 125-145 (1990) · Zbl 0794.17008
[17] Lenart, C.: On the combinatorics of crystal graphs, I. Lusztig’s involution. Adv. Math. 211, 324-340 (2007) · Zbl 1129.05058 · doi:10.1016/j.aim.2006.08.002
[18] Lenart, C., Lubovsky, A.: A generalization of the alcove model and its applications. J. Algebraic Combin. 41, 751-783 (2015) · Zbl 1314.05224 · doi:10.1007/s10801-014-0552-3
[19] Lenart, C., Postnikov, A.: Affine Weyl Groups in \[KK\]-Theory and Representation Theory, Int. Math. Res. Not., Art. ID rnm038, pp. 1-65 (2007) · Zbl 1137.14037
[20] Lenart, C., Postnikov, A.: A combinatorial model for crystals of Kac-Moody algebras. Trans. Am. Math. Soc. 360, 4349-4381 (2008) · Zbl 1211.17021 · doi:10.1090/S0002-9947-08-04419-X
[21] Lenart, C., Shimozono, M.: Equivariant \[KK\]-Chevalley rules for Kac-Moody flag manifolds. Am. J. Math. 136, 1175-1213 (2014) · Zbl 1328.19012 · doi:10.1353/ajm.2014.0034
[22] Littelmann, P.: A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras. Invent. Math. 116, 329-346 (1994) · Zbl 0805.17019 · doi:10.1007/BF01231564
[23] Littelmann, P.: Cones, crystals and patterns. Transf. Groups 3, 145-179 (1998) · Zbl 0908.17010 · doi:10.1007/BF01236431
[24] Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra, Graduate Texts in Math. 227, Springer, New York, xiv + 417 pp (2004)
[25] Peeva, I.: Graded Syzygies, Algebra and Applications, 14 Springer, London, xii + 302 pp (2011) · Zbl 1213.13002
[26] Quillen, D.: Homotopy properties of the poset of non-trivial \[p\] p-subgroups of a group. Adv. Math. 28, 101-128 (1978) · Zbl 0388.55007 · doi:10.1016/0001-8708(78)90058-0
[27] Reiner, V., Shimozono, M.: Key polynomials and a flagged Littlewood-Richardson rule. J. Combin. Theory Ser. A 70, 107-143 (1995) · Zbl 0819.05058 · doi:10.1016/0097-3165(95)90083-7
[28] Rota, G.-C.: On the foundations of combinatorial theory, I. Theory of Möbius functions. Z. Wahrschleinlichkeitstheorie und Verw. Gebiete 2, 340-368 (1964) · Zbl 0121.02406 · doi:10.1007/BF00531932
[29] Shareshian, J.: On the shellability of the order complex of the subgroup lattice of a finite group. Trans. Am. Math. Soc. 353, 2689-2703 (2001) · Zbl 0982.06004 · doi:10.1090/S0002-9947-01-02730-1
[30] Shareshian, J., Woodroofe, R.: A new subgroup lattice characterization of finite solvable groups. J. Algebra 351, 448-458 (2012) · Zbl 1252.20019 · doi:10.1016/j.jalgebra.2011.10.032
[31] Smith, S.: Subgroup complexes, Mathematical Surveys and Monographs, 179, American Mathematical Society, Providence, RI, xii + 364 pp (2011) · Zbl 1129.05058
[32] Stanley, R.: Enumerative Combinatorics, vol. 1, 2nd edn. Cambridge University Press, Cambridge (2012) · Zbl 1247.05003
[33] Stanley, R.: Supersolvable lattices. Algebra Universalis 2, 197-217 (1972) · Zbl 0256.06002 · doi:10.1007/BF02945028
[34] Stembridge, J.: A local characterization of simply laced crystals. Trans. Am. Math. Soc. 355, 4807-4823 (2003) · Zbl 1047.17007 · doi:10.1090/S0002-9947-03-03042-3
[35] Sternberg, P.: On the local structure of doubly laced crystals. J. Combin. Theory Ser. A 114, 809-824 (2007) · Zbl 1232.17027 · doi:10.1016/j.jcta.2006.09.003
[36] Willis, M.: Relating the right key to the type \[A\] A filling map and minimal defining chains. Discrete Math. 339, 2410-2416 (2016) · Zbl 1339.05425 · doi:10.1016/j.disc.2016.04.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.