×

A new homogenization formulation for multifunctional composites. (English) Zbl 1359.74357

Summary: Periodic microstructural composites have gained considerable attention in material science and engineering attributable to their excellent flexibility in tailoring various desirable physical properties. Conventionally, the finite element technique has been widely used in implementing the homogenization. However, the standard finite element method (FEM) leads to an overly stiff model which sometimes gives unsatisfactory accuracy especially using triangular elements in 2D or tetrahedral elements in 3D with coarse mesh. In this paper, different forms of smoothed finite element method (SFEM) are presented to develop new asymptotic homogenization techniques for analyzing various effective physical properties of periodic microstructural composite materials. A range of multifunctional material examples, including elastic modulus with multiphase composites, conductivity of thermal and electrical composites, and diffusivity/permeability of 3D tissue scaffold, has exemplified herein to demonstrate that SFEM is able to provide more accurate results using the same set of mesh compared with the standard FEM. In addition, the computational efficiency of SFEM is also higher than that of the standard FEM counterpart.

MSC:

74Q05 Homogenization in equilibrium problems of solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74E30 Composite and mixture properties
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alexander, A. and Tzeng, J. T. [1997] ” Three dimensional effective properties of composite materials for finite element applications,” J. Compos Mater.31(5), 466-485. genRefLink(16, ’S0219876216400028BIB001’, ’10.1177
[2] Andreassen, E. and Andreasen, C. S. [2014] ” How to determine composite material properties using numerical homogenization,” Comput. Mater. Sci.83, 488-495. genRefLink(16, ’S0219876216400028BIB002’, ’10.1016
[3] Bendsoe, M. P. and Kikuchi, N. [1988] ” Generating optimal topologies in structural design using a homogenization method,” Comput. Methods Appl. Mech. Eng.71, 197-224. genRefLink(16, ’S0219876216400028BIB003’, ’10.1016
[4] Berryman, J. G. and Milton, G. W. [1988] ” Microgeometry of random composites and porous-media,” J. Phys. D Appl. Phys.21(1), 87-97. genRefLink(16, ’S0219876216400028BIB004’, ’10.1088
[5] Boso, D. P., Lefik, M. and Schrefler, B. A. [2009] ” Recent developments in numerical homogenization,” Comput. Assist. Mech. Eng. Sci.16, 161-183. · Zbl 1227.74052
[6] Cadman, J. E., Zhou, S. W., Chen, Y. H. and Li, Q. [2013] ” On Design of multifunctional microstructural materials,” J. Mater. Sci.48(1), 51-66. genRefLink(16, ’S0219876216400028BIB006’, ’10.1007
[7] Chen, Y. H., Zhou, S. W. and Li, Q. [2009] ” Computational design for multifunctional microstructural composites,” Int. J. Mod. Phys. B23, 1345-1351. [Abstract] genRefLink(128, ’S0219876216400028BIB007’, ’000266134700094’);
[8] Chen, Y. H., Zhou, S. W. and Li, Q. [2011] ” Microstructure design of biodegradable scaffold and its effect on tissue regeneration,” Biomaterials32, 5003-5014. genRefLink(16, ’S0219876216400028BIB008’, ’10.1016
[9] Cherkaev, A. V. and Gibiansky, L. V. [1993] ” Coupled estimates for the bulk and shear moduli of a 2-dimensional isotropic elastic composite,” J. Mech. Phys. Solids41(5), 937-980. genRefLink(16, ’S0219876216400028BIB009’, ’10.1016
[10] Dai, K. Y., Liu, G. R. and Nguyen, T. T. [2007] ” An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics,” Finite Elem. Anal. Des.43, 847-860. genRefLink(16, ’S0219876216400028BIB010’, ’10.1016
[11] Fang, Z., Sun, W. and Tzeng, J. T. [2004] ” Asymptotic homogenization and numerical implementation to predict the effective mechanical properties for electromagnetic composite conductor,” J. Compos Mater.38, 1371. genRefLink(16, ’S0219876216400028BIB011’, ’10.1177
[12] Fujii, D., Chen, B. C. and Kikuchi, N. [2001] ” Composite material design of two-dimensional structures using the homogenization design method,” Int. J. Numer. Methods Eng.50, 2031-2051. genRefLink(16, ’S0219876216400028BIB012’, ’10.1002 · Zbl 0994.74055
[13] Guedes, J. M. and Kikuchi, N. [1990] ” Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element method,” Comput. Methods Appl. Mech. Eng.83, 143-198. genRefLink(16, ’S0219876216400028BIB013’, ’10.1016
[14] Hashin, Z. and Shtrikman, S. [1963] ” A variational approach to the theory of composite elastic materials,” J. Mech. Phys. Solids11(2), 127-140. genRefLink(16, ’S0219876216400028BIB014’, ’10.1016
[15] Hassani, B. and Hinton, E. [1998a] ” A review of homogenization and topology optimization I - Homogenization Theory for media with periodic structure,” Comput. Struct.69, 707-717. genRefLink(16, ’S0219876216400028BIB015’, ’10.1016
[16] Hassani, B. and Hinton, E. [1998b] ” A review of homogenization and topology optimization II - Analytical and numerical solution of homogenization equations,” Comput. Struct.69, 719-738. genRefLink(16, ’S0219876216400028BIB016’, ’10.1016
[17] He, Z. C., Cheng, A. G., Zhong, Z. H., Zhang, G. Y., Li, G. Y. and Li, E. [2013a] ” An improved eigenfrequencies prediction for three-dimensional problems using face-based smoothed finite element method,” Acta Mech. Solida Sin.26, 140-150. genRefLink(16, ’S0219876216400028BIB017’, ’10.1016
[18] He, Z. C., Li, G. Y., Li, E., Zhong, Z. H. and Liu, G. R. [2014] ” Mid-frequency acoustics analysis using edge-based smoothed tetrahedron radial point interpolation method (ES-T-RPIM),” Int. J. Comput. Meth., doi: [10.1142/S021987621350103X] . genRefLink(128, ’S0219876216400028BIB018’, ’000344257100012’); · Zbl 1359.76255
[19] He, Z. C., Li, G. Y., Zhong, Z. H., Cheng, A. G., Zhang, G. Y., Li, E. and Liu, G. R. [2012] ” An ES-FEM for accurate analysis of 3D mid-frequency acoustics using tetrahedron mesh,” Comput. Struct.106-107, 125-134. genRefLink(16, ’S0219876216400028BIB019’, ’10.1016
[20] He, Z. C., Li, G. Y., Zhong, Z. H., Cheng, A. G., Zhang, G. Y., Liu, G. R., Li, E. and Zhou, Z. [2013b] ” An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems,” Comput. Mech.2, 221-236. genRefLink(16, ’S0219876216400028BIB020’, ’10.1007 · Zbl 1308.74064
[21] Heesuk, K., Lin, C. Y. and Hollister, S. J. [2010] ” Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity,” Struct. Multidiscip. Optim.42(4), 633-644. genRefLink(16, ’S0219876216400028BIB021’, ’10.1007
[22] Hollister, S. J. and Kikuchi, N. [1992] ” A comparison of homogenization and standard mechanics analyses for periodic porous composites,” Comput. Mech.10, 73-95. genRefLink(16, ’S0219876216400028BIB022’, ’10.1007 · Zbl 0787.73008
[23] Hollister, S. J. and Lin, C. Y. [2007] ” Computational design of tissue engineering scaffolds,” Comput. Methods Appl. Mech. Eng.196, 2991-2998. genRefLink(16, ’S0219876216400028BIB023’, ’10.1016 · Zbl 1125.74031
[24] Hung, N. X., Bordas, S. and Hung, N. D. [2008] ” Smooth finite element methods: Convergence, accuracy and properties,” Int. J. Numer. Methods Eng.74, 175-208. genRefLink(16, ’S0219876216400028BIB024’, ’10.1002
[25] Ivorra, A., Bassimm, A. S. and Rubinsky, B. [2008] ” Use of conductive gels for electric field homogenization increases the antitumor efficacy of electroporation therapies,” Phys. Med. Biol.3, 6605-6618. genRefLink(16, ’S0219876216400028BIB025’, ’10.1088
[26] Kruijf, N. D., Zhou, S. H., Li, Q. and Mai, Y. W. [2007] ” Topological design of structures and composite materials with multiobjectives,” Int. J. Solids Struct.44, 7092-7109. genRefLink(16, ’S0219876216400028BIB026’, ’10.1016 · Zbl 1166.74407
[27] Kuznetsov, S. [2012] Homogenization Methods for Problems with Multiphysics, Temporal and Spatial Coupling, Ph.D. thesis, Columbia University.
[28] Li, E., He, Z. C. and Xu, X. [2013] ” A novel edge-based smoothed tetrahedron finite element method (ES-T-FEM) for thermo mechanical problems,” Int. J. Heat Mass Transf.66, 723-732. genRefLink(16, ’S0219876216400028BIB028’, ’10.1016
[29] Li, E., He, Z. C., Xu, X. and Liu, G. R. [2015] ” Hybrid smoothed finite element method for acoustic problems,” Comput. Methods Appl. Mech. Eng.283(1), 664-688. genRefLink(16, ’S0219876216400028BIB029’, ’10.1016 · Zbl 1423.74902
[30] Li, E., Liu, G. R., Xu, G. X., Tan, V. and He, Z. C. [2012] ” Numerical modeling and simulation of pulsatile blood flow in rigid vessel using gradient smoothing method,” Eng. Anal. Bound. Elem.36(3), 322-334. genRefLink(16, ’S0219876216400028BIB030’, ’10.1016 · Zbl 1245.76165
[31] Li, E., Liu, G. R. and Tan, V. [2010a] ” Simulation of hyperthermia treatment using the edge-based smoothed finite-element method,” Numer. Heat Tranf. A Appl.57(11), 822-847. genRefLink(16, ’S0219876216400028BIB031’, ’10.1080
[32] Li, E., Liu, G. R., Tan, V. and He, Z. C. [2010b] ” Modeling and simulation of bioheat transfer in the human eye using the 3D alpha finite element method ({\(\alpha\)} FEM),” Int. J. Numer. Methods Biomed.26, 955-976. genRefLink(16, ’S0219876216400028BIB032’, ’10.1002 · Zbl 1193.92061
[33] Li, E., Liu, G. R., Tan, V. and He, Z. C. [2010c] ” An efficient algorithm for phase change problem in tumor treatment using {\(\alpha\)} FEM,” Int. J. Therm. Sci.49(10), 1954-1967. genRefLink(16, ’S0219876216400028BIB033’, ’10.1016
[34] Li, E., Tan, V., Xu, G. X., Liu, G. R. and He, Z. C. [2011] ” A novel linearly-weighted gradient smoothing method (LWGSM) in the simulation of fluid dynamics problem,” Comput. Fluids50, 104-119. genRefLink(16, ’S0219876216400028BIB034’, ’10.1016 · Zbl 1271.76248
[35] Li, Q. W. et al., [2007] ” Structure-dependent electrical properties of carbon nanotube fibers,” Adv. Mater.19, 3358-3363. genRefLink(16, ’S0219876216400028BIB035’, ’10.1002
[36] Liu, G. R. [2002] Meshfree Methods: Moving Beyond the Finite Element Method (CRC Press, Boca Raton, USA). genRefLink(16, ’S0219876216400028BIB036’, ’10.1201
[37] Liu, G. R. [2008] ” A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods,” Int. J. Comput. Methods5, 199-236. [Abstract] genRefLink(128, ’S0219876216400028BIB037’, ’000267111800001’); · Zbl 1222.74044
[38] Liu, G. R. [2010] ” A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part I theory,” Int. J. Numer. Methods Eng.81, 1093-1126. genRefLink(128, ’S0219876216400028BIB038’, ’000274876100002’); · Zbl 1183.74358
[39] Liu, G. R., Dai, K. Y. and Nguyen, T. T. [2007a] ” A smoothed finite element method for mechanics problems,” Comput. Mech.39, 859-877. genRefLink(16, ’S0219876216400028BIB039’, ’10.1007 · Zbl 1169.74047
[40] Liu, G. R., Nguyen, T. T., Dai, K. Y. and Lam, K. Y. [2007b] ” Theoretical aspects of the smoothed finite element method (SFEM),” Int. J. Numer. Methods Eng.71, 902-930. genRefLink(16, ’S0219876216400028BIB040’, ’10.1002 · Zbl 1194.74432
[41] Liu, G. R., Nguyen, T. T. and Lam, K. Y. [2009a] ” An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids,” J. Sound Vib.320, 1100-1130. genRefLink(16, ’S0219876216400028BIB041’, ’10.1016
[42] Liu, G. R., Nguyen, T. T., Nguyen, H. X. and Lam, K. Y. [2009b] ” A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems,” Comput. Struct.87, 14-26. genRefLink(16, ’S0219876216400028BIB042’, ’10.1016
[43] Liu, G. R. and Zhang, G. Y. [2013] Smoothed Point Interpolation Methods (World Scientific, Singapore). [Abstract]
[44] Michel, J. C., Moulinec, H. and Suquet, P. [1999] ” Effective properties of composite materials with periodic microstructure: A computational approach,” Comput. Methods Appl. Mech. Eng.172, 109-143. genRefLink(16, ’S0219876216400028BIB044’, ’10.1016 · Zbl 0964.74054
[45] Moulinec, H. and Suquet, P. [1998] ” A numerical method for computing the overall response of nonlinear composites with complex microstructure,” Comput. Methods Appl. Mech. Eng.157, 69-94. genRefLink(16, ’S0219876216400028BIB045’, ’10.1016 · Zbl 0954.74079
[46] Sigmund, O. [1994] ” Materials with prescribed constitutive parameters: An inverse homogenization problem,” Int. J. Solids Struct.17, 2313-2329. genRefLink(16, ’S0219876216400028BIB046’, ’10.1016 · Zbl 0946.74557
[47] Song, Y. S. and Youn, J. R. [2006] ” Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume finite element method,” Carbon44(4), 710-717. genRefLink(16, ’S0219876216400028BIB047’, ’10.1016
[48] Sturm, S., Zhou, S. W., Mai, Y. M. and Li, Q. [2010] ” On stiffness of scaffolds for bone tissue engineering–a numerical study,” J. Biomech.43, 1738-1744. genRefLink(16, ’S0219876216400028BIB048’, ’10.1016
[49] Sun, H., Di, S., Zhang, N. and Wu, C. [2001] ” Micromechanics of composite materials using multivariable finite element method and homogenization theory,” Int. J. Solids Struct.38, 3007-3020. genRefLink(16, ’S0219876216400028BIB049’, ’10.1016 · Zbl 0971.74027
[50] Xing, Y. F. and Chen, L. [2014a] ” Physical interpretation of multiscale asymptotic expansion method,” Compos. Struct.116, 694-702. genRefLink(16, ’S0219876216400028BIB050’, ’10.1016
[51] Xing, Y. F. and Chen, L. [2014b] ” Accuracy of multiscale asymptotic expansion method,” Compos. Struct.112, 38-43. genRefLink(16, ’S0219876216400028BIB051’, ’10.1016
[52] Ye, Z. and Yu, W. B. [2013] ” A new approach to bounding effective properties of random heterogeneous materials,” AIAA J.51(2), 426-432. genRefLink(16, ’S0219876216400028BIB052’, ’10.2514
[53] Yi, Y., Park, S. and Youn, S. [1998] ” Asymptotic homogenization of viscoelastic composites with periodic microstructures,” Int. J. Solids Struct.35, 2039-2055. genRefLink(16, ’S0219876216400028BIB053’, ’10.1016 · Zbl 0933.74054
[54] Zhou, S. W., Cadman, J., Chen, Y. H., Li, W., Xie, Y. M., Huang, X. D., Appleyard, R., Sun, G. Y. and Li, Q. [2012] ” Design and fabrication of biphasic cellular materials with transport properties – A modified bidirectional evolutionary structural optimization procedure and MATLAB program,” Int. J. Heat Mass Transf.55, 8149-8162. genRefLink(16, ’S0219876216400028BIB054’, ’10.1016
[55] Zhou, S. W. and Li, Q. [2008] ” A microstructure diagram for known bounds in conductivity,” J. Mater. Res.23(3), 798-811. genRefLink(16, ’S0219876216400028BIB055’, ’10.1557
[56] Zienkiewicz, O. C. and Taylor, R. L. [2000] The Finite Element Method, 5th edition (Butterworth Heinemann, Oxford, UK). · Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.