×

Time-periodic solutions of driven-damped trimer granular crystals. (English) Zbl 1394.74132

Summary: We consider time-periodic structures of granular crystals consisting of alternate chrome steel (S) and tungsten carbide (W) spherical particles where each unit cell follows the pattern of a 2:1 trimer: S-W-S. The configuration at the left boundary is driven by a harmonic in-time actuation with given amplitude and frequency while the right one is a fixed wall. Similar to the case of a dimer chain, the combination of dissipation, driving of the boundary, and intrinsic nonlinearity leads to complex dynamics. For fixed driving frequencies in each of the spectral gaps, we find that the nonlinear surface modes and the states dictated by the linear drive collide in a saddle-node bifurcation as the driving amplitude is increased, beyond which the dynamics of the system becomes chaotic. While the bifurcation structure is similar for solutions within the first and second gap, those in the first gap appear to be less robust. We also conduct a continuation in driving frequency, where it is apparent that the nonlinearity of the system results in a complex bifurcation diagram, involving an intricate set of loops of branches, especially within the spectral gap. The theoretical findings are qualitatively corroborated by the experimental full-field visualization of the time-periodic structures.

MSC:

74N05 Crystals in solids
34A33 Ordinary lattice differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Nesterenko, V. F., Dynamics of Heterogeneous Materials, (2001), New York, NY, USA: Springer, New York, NY, USA
[2] Sen, S.; Hong, J.; Bang, J.; Avalos, E.; Doney, R., Solitary waves in the granular chain, Physics Reports, 462, 2, 21-66, (2008) · doi:10.1016/j.physrep.2007.10.007
[3] Theocharis, G.; Boechler, N.; Daraio, C., Nonlinear periodic phononic structures and granular crystals, Acoustic Metamaterials and Phononic Crystals. Acoustic Metamaterials and Phononic Crystals, Springer Series in Solid-State Sciences, 173, 217-251, (2013), New York, NY, USA: Springer, New York, NY, USA · doi:10.1007/978-3-642-31232-8_7
[4] Coste, C.; Falcon, E.; Fauve, S., Solitary waves in a chain of beads under Hertz contact, Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 56, 5, 6104-6117, (1997)
[5] Ahnert, K.; Pikovsky, A., Compactons and chaos in strongly nonlinear lattices, Physical Review E, 79, 2, (2009) · doi:10.1103/physreve.79.026209
[6] Herbold, E. B.; Nesterenko, V. F., Shock wave structure in a strongly nonlinear lattice with viscous dissipation, Physical Review E, 75, 2, (2007) · doi:10.1103/PhysRevE.75.021304
[7] Rosas, A.; Romero, A. H.; Nesterenko, V. F.; Lindenberg, K., Observation of two-wave structure in strongly nonlinear dissipative granular chains, Physical Review Letters, 98, 16, (2007) · doi:10.1103/PhysRevLett.98.164301
[8] Molinari, A.; Daraio, C., Stationary shocks in periodic highly nonlinear granular chains, Physical Review E, 80, (2009) · doi:10.1103/physreve.80.056602
[9] Theocharis, G.; Kavousanakis, M.; Kevrekidis, P. G.; Daraio, C.; Porter, M. A.; Kevrekidis, I. G., Localized breathing modes in granular crystals with defects, Physical Review E, 80, 6, (2009) · doi:10.1103/physreve.80.066601
[10] Job, S.; Santibanez, F.; Tapia, F.; Melo, F., Wave localization in strongly nonlinear Hertzian chains with mass defect, Physical Review E, 80, (2009) · doi:10.1103/physreve.80.025602
[11] Boechler, N.; Theocharis, G.; Job, S.; Kevrekidis, P. G.; Porter, M. A.; Daraio, C., Discrete breathers in one-dimensional diatomic granular crystals, Physical Review Letters, 104, 24, (2010) · doi:10.1103/PhysRevLett.104.244302
[12] Boechler, N.; Theocharis, G.; Daraio, C., Bifurcation-based acoustic switching and rectification, Nature Materials, 10, 9, 665-668, (2011) · doi:10.1038/nmat3072
[13] Hoogeboom, C.; Man, Y.; Boechler, N.; Theocharis, G.; Kevrekidis, P. G.; Kevrekidis, I. G.; Daraio, C., Hysteresis loops and multi-stability: from periodic orbits to chaotic dynamics (and back) in diatomic granular crystals, EPL, 101, 4, (2013) · doi:10.1209/0295-5075/101/44003
[14] Hoogeboom, C.; Kevrekidis, P. G., Breathers in periodic granular chains with multiple band gaps, Physical Review E, 86, (2012) · doi:10.1103/physreve.86.061305
[15] Chong, C.; Li, F.; Yang, J.; Williams, M. O.; Kevrekidis, I. G.; Kevrekidis, P. G.; Daraio, C., Damped-driven granular chains: an ideal playground for dark breathers and multibreathers, Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 89, 3, (2014) · doi:10.1103/physreve.89.032924
[16] Daraio, C.; Nesterenko, V. F.; Herbold, E. B.; Jin, S., Energy trapping and shock disintegration in a composite granular medium, Physical Review Letters, 96, 5, (2006) · doi:10.1103/physrevlett.96.058002
[17] Hong, J., Universal power-law decay of the impulse energy in granular protectors, Physical Review Letters, 94, (2005) · doi:10.1103/physrevlett.94.108001
[18] Fraternali, F.; Porter, M. A.; Daraio, C., Optimal design of composite granular protectors, Mechanics of Advanced Materials and Structures, 17, 1, 1, (2010)
[19] Doney, R.; Sen, S., Decorated, tapered, and highly nonlinear granular chain, Physical Review Letters, 97, (2006) · doi:10.1103/physrevlett.97.155502
[20] Khatri, D.; Daraio, C.; Rizzo, P., Highly nonlinear waves’ sensor technology for highway infrastructures, Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2008 · doi:10.1117/12.775848
[21] Spadoni, A.; Daraio, C., Generation and control of sound bullets with a nonlinear acoustic lens, Proceedings of the National Academy of Sciences of the United States of America, 107, 7230-7234, (2010) · doi:10.1073/pnas.1001514107
[22] Li, F.; Anzel, P.; Yang, J.; Kevrekidis, P. G.; Daraio, C., Granular acoustic switches and logic elements, Nature Communications, 5, article 5311, (2014) · doi:10.1038/ncomms6311
[23] Daraio, C.; Nesterenko, V. F.; Herbold, E. B.; Jin, S., Strongly nonlinear waves in a chain of Teflon beads, Physical Review E, 72, 1, (2005) · doi:10.1103/physreve.72.016603
[24] Nesterenko, V. F.; Daraio, C.; Herbold, E. B.; Jin, S., Anomalous wave reflection at the interface of two strongly nonlinear granular media, Physical Review Letters, 95, 15, (2005) · doi:10.1103/PhysRevLett.95.158702
[25] Flach, S.; Gorbach, A. V., Discrete breathers—advances in theory and applications, Physics Reports, 467, 1–3, 1-116, (2008) · doi:10.1016/j.physrep.2008.05.002
[26] Lederer, F.; Stegeman, G. I.; Christodoulides, D. N.; Assanto, G.; Segev, M.; Silberberg, Y., Discrete solitons in optics, Physics Reports, 463, 1–3, 1-126, (2008) · doi:10.1016/j.physrep.2008.04.004
[27] Sato, M.; Hubbard, B. E.; Sievers, A. J., Colloquium: nonlinear energy localization and its manipulation in micromechanical oscillator arrays, Reviews of Modern Physics, 78, 1, 137-157, (2006) · doi:10.1103/revmodphys.78.137
[28] Binder, P.; Abraimov, D.; Ustinov, A. V.; Flach, S.; Zolotaryuk, Y., Observation of breathers in Josephson ladders, Physical Review Letters, 84, 4, 745-748, (2000) · doi:10.1103/physrevlett.84.745
[29] Trías, E.; Mazo, J. J.; Orlando, T. P., Discrete breathers in nonlinear lattices: experimental detection in a Josephson array, Physical Review Letters, 84, 4, 741-744, (2000) · doi:10.1103/physrevlett.84.741
[30] English, L. Q.; Sato, M.; Sievers, A. J., Modulational instability of nonlinear spin waves in easy-axis antiferromagnetic chains. II. Influence of sample shape on intrinsic localized modes and dynamic spin defects, Physical Review B, 67, (2003) · doi:10.1103/physrevb.67.024403
[31] Schwarz, U. T.; English, L. Q.; Sievers, A. J., Experimental generation and observation of intrinsic localized spin wave modes in an antiferromagnet, Physical Review Letters, 83, article 223, (1999) · doi:10.1103/physrevlett.83.223
[32] Swanson, B. I.; Brozik, J. A.; Love, S. P.; Strouse, G. F.; Shreve, A. P.; Bishop, A. R.; Wang, W.-Z.; Salkola, M. I., Observation of intrinsically localized modes in a discrete low-dimensional material, Physical Review Letters, 82, 16, 3288-3291, (1999) · doi:10.1103/physrevlett.82.3288
[33] Peyrard, M., Nonlinear dynamics and statistical physics of DNA, Nonlinearity, 17, 2, R1-R40, (2004) · Zbl 1092.82015 · doi:10.1088/0951-7715/17/2/r01
[34] Morsch, O.; Oberthaler, M., Dynamics of Bose-Einstein condensates in optical lattices, Reviews of Modern Physics, 78, 1, 179-215, (2006) · doi:10.1103/revmodphys.78.179
[35] James, G., Existence of breathers on FPU lattices, Comptes Rendus de l’Académie des Sciences, Series I: Mathematics, 332, 6, 581-586, (2001) · Zbl 1116.37303 · doi:10.1016/s0764-4442(01)01894-8
[36] James, G., Centre manifold reduction for quasilinear discrete systems, Journal of Nonlinear Science, 13, 1, 27-63, (2003) · Zbl 1185.37158 · doi:10.1007/s00332-002-0525-x
[37] Man, Y.; Boechler, N.; Theocharis, G.; Kevrekidis, P. G.; Daraio, C., Defect modes in one-dimensional granular crystals, Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 85, 3, (2012) · doi:10.1103/physreve.85.037601
[38] Herbold, E. B.; Kim, J.; Nesterenko, V. F.; Wang, S. Y.; Daraio, C., Pulse propagation in a linear and nonlinear diatomic periodic chain: effects of acoustic frequency band-gap, Acta Mechanica, 205, 1–4, 85-103, (2009) · Zbl 1167.74003 · doi:10.1007/s00707-009-0163-6
[39] Jayaprakash, K. R.; Vakakis, A. F.; Starosvetsky, Y., Nonlinear resonances in a general class of granular dimers with no pre-compression, Granular Matter, 15, 3, 327-347, (2013) · doi:10.1007/s10035-013-0404-1
[40] Jayaprakash, K. R.; Starosvetsky, Y.; Vakakis, A. F.; Gendelman, O. V., Nonlinear resonances leading to strong pulse attenuation in granular dimer chains, Journal of Nonlinear Science, 23, 3, 363-392, (2013) · Zbl 1319.70023 · doi:10.1007/s00332-012-9155-0
[41] Jayaprakash, K. R.; Vakakis, A. F.; Starosvetsky, Y., Solitary waves in a general class of granular dimer chains, Journal of Applied Physics, 112, 3, (2012) · doi:10.1063/1.4740060
[42] Potekin, R.; Jayaprakash, K. R.; McFarland, D. M.; Remick, K.; Bergman, L. A.; Vakakis, A. F., Experimental study of strongly nonlinear resonances and anti-resonances in granular dimer chains, Experimental Mechanics, 53, 5, 861-870, (2013) · doi:10.1007/s11340-012-9673-6
[43] Hertz, H., Über die Berührung fester, elastischer Körper, Journal für die Reine und Angewandte Mathematik, 92, 156-171, (1881) · JFM 14.0807.01
[44] Johnson, K. L., Contact Mechanics, (1985), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0599.73108
[45] Boechler, N.; Yang, J.; Theocharis, G.; Kevrekidis, P. G.; Daraio, C., Tunable vibrational band gaps in one-dimensional diatomic granular crystals with three-particle unit cells, Journal of Applied Physics, 109, 7, (2011) · doi:10.1063/1.3556455
[46] Nayfeh, A. H.; Mook, D. T., Nonlinear Oscillations, (2004), Weinheim, Germany: John Wiley & Sons, Weinheim, Germany
[47] Nayfeh, A. H.; Balachandran, B., Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods, Wiley Series in Nonlinear Science, (1995), John Wiley & Sons · Zbl 0848.34001 · doi:10.1002/9783527617548
[48] Doedel, E.; Keller, H. B.; Kernévez, J.-P., Numerical analysis and control of bifurcation problems (I): bifurcation in finite dimensions, International Journal of Bifurcation and Chaos, 1, 3, 493-520, (1991) · Zbl 0876.65032 · doi:10.1142/s0218127491000397
[49] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I. Solving Ordinary Differential Equations I, Springer Series in Computational Mathematics, 8, (1993), Berlin, Germany: Springer, Berlin, Germany · Zbl 0789.65048
[50] Shampine, L. F.; Gordon, M. K., Computer Solution of Ordinary Differential Equations: The Initial Value Problem, (1975), New York, NY, USA: W. H. Freeman, New York, NY, USA · Zbl 0347.65001
[51] Doedel, E.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.