zbMATH — the first resource for mathematics

A multilevel component mode synthesis approach for the calculation of the phonon density of states of nanocomposite structures. (English) Zbl 1310.74003
Summary: In this paper, a multilevel component mode synthesis (MCMS) approach is presented for the calculation of the phonon density of states (PDOS) of nanocomposite structures. In this approach, the nanocomposite structures are described by hierarchical levels of substructures. The phonon frequencies and modes are first computed for the bottom level substructures by using the theory of lattice dynamics. The computed component modes are then synthesized by using a quasi-static component mode synthesis (QSM) technique to obtain the phonon modes of the upper-level substructures in a bottom-up manner. By repeating this procedure, the PDOS of the entire nanostructure can be obtained. The proposed approach, while retains the atomic description of the nanocomposite structure, significantly reduces the computational cost of the calculation. Numerical calculations show that the proposed approach provides accurate results with a much less computational cost. The PDOS of several 1-D atom chains and 2-D atom sheets are computed by using the MCMS.

74A25 Molecular, statistical, and kinetic theories in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
74A60 Micromechanical theories
74A40 Random materials and composite materials
Full Text: DOI
[1] Thostenson ET, Li C and Chou TW (2005). Nanocomposites in context. Composite Sci Tech 65: 491 · doi:10.1016/j.compscitech.2004.11.003
[2] Hariharan S and Gass J (2005). Superparamagnetism and magneto-caloric effect (MCE) in functional magnetic nanostructures. Rev Adv Mater Sci 10(5): 398
[3] Tritt TM (ed) (2000). Semiconductors and semimetals. Academic Press, London, pp 69-71
[4] Katsuyama S, Kanayama Y, Ito M, Majima K and Nagai H (2000). Thermoelectric properties of CoSb3 with dispersed FeSb2 particles. J Appl Phys 88(6): 3484 · doi:10.1063/1.1288015
[5] Yang R and Chen G (2004). Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys Rev B 69: 195316 · doi:10.1103/PhysRevB.69.195316
[6] Sanchez C, Julian B, Belleville P and Popall M (2005). Applications of hybrid organic-inorganic nanocomposites. J Mater Chem 15(35–36): 3559 · doi:10.1039/b509097k
[7] Goyal RK, Tiwari AN, Mulik UP and Negi YS (2007). Novel high performance A12O3 /poly(ether ether ketone) nanocomposites for electronics applications. Composite Sci Tech 67: 1802 · doi:10.1016/j.compscitech.2006.10.020
[8] Tang Z, Zhao H, Li G and Aluru NR (2006). Finite-temperature quasicontinuum method for multiscale analysis of silicon nanostructures. Phys Rev B 74: 064110 · doi:10.1103/PhysRevB.74.064110
[9] Zhao H, Tang Z, Li G and Aluru NR (2005). Quasiharmonic models for the calculation of thermodynamic properties of crystalline silicon under strain. J Appl Phys 99: 064314 · doi:10.1063/1.2185834
[10] Porter LJ, Justo JF and Yip S (1997). The importance of Gruneisen parameters in developing interatomic potentials. J Appl Phys 82: 5378 · doi:10.1063/1.366305
[11] Li J, Porter L and Yip S (1998). Atomistic modeling of finite-temperature properties of crystalline beta-SiC. II. Thermal conductivity and effects of point defects. J Nuclear Mater 255: 139 · doi:10.1016/S0022-3115(98)00034-8
[12] Grimvall G (1981). The electron–phonon interaction in metals. North–Holland, Amsterdam
[13] Ashcroft NW and Mermin ND (1976). Solid state physics. Harcourt, New York
[14] Maradudin AA, Montroll EW, Weiss GH and Ipatova IP (1971). Theory of lattice dynamics in the harmonic approximation. Academic Press, London
[15] Wallace DC (1972). Thermodynamics of crystals. Wiley, London
[16] Cunedioglu Y, Mugan A and Akcay H (2006). Frequency domain analysis of model order reduction techniques. Finite Elem Anal Des 42: 367 · doi:10.1016/j.finel.2005.08.005
[17] Bampton MCC and Craig RR (1968). Coupling of substructures for dynamic analysis. AIAA J 6: 1313 · Zbl 0159.56202 · doi:10.2514/3.4741
[18] Min KW, Igusa T and Achenbach JD (1992). Frequency window method for forced vibration of structures with connected substructures. J Acoust Soc Am 92(5): 2726 · doi:10.1121/1.404389
[19] Shyu WH, Ma ZD and Hulbert GM (1997). A new component mode synthesis method: quasi-static mode compensation. Finite Elem Anal Des 24: 271 · Zbl 0917.73039 · doi:10.1016/S0168-874X(96)00066-2
[20] Shyu WH, Gu J, Hulbert GM and Ma ZD (2000). On the use of multiple quasi-static mode compensation sets for component mode synthesis of complex structures. Finite Elem Anal Des 35: 119 · Zbl 0980.74025 · doi:10.1016/S0168-874X(99)00058-X
[21] Markovic D, Park KC and Ibrahimbegovic A (2007). Reduction of substructural interface degrees of freedom in flexibility-based component mode synthesis. Int J Numer Meth Eng 70: 163 · Zbl 1194.74120 · doi:10.1002/nme.1878
[22] Girifalco LA and Lad RA (1956). Energy of cohesion, compressibility and the potential energy functions of the graphite system. J Chem Phys 25: 693 · doi:10.1063/1.1743030
[23] Morse PM (1929). Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys Rev 34: 57 · JFM 55.0539.02 · doi:10.1103/PhysRev.34.57
[24] Tersoff J (1988). Empirical interatomic potential for silicon with improved elastic properties. Phys Rev B 38: 9902 · doi:10.1103/PhysRevB.38.9902
[25] Brenner DW (1990). Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42: 9458 · doi:10.1103/PhysRevB.42.9458
[26] Stillinger FH and Weber TA (1985). Computer simulation of local order in condensed phases of silicon. Phys Rev B 31: 5262 · doi:10.1103/PhysRevB.31.5262
[27] Tomar V and Zhou M (2006). Classical molecular-dynamics potential for the mechanical strength of nanocrystalline composite fcc Al + \(\alpha\) Fe2 O3. Phys Rev B 73: 174116 · doi:10.1103/PhysRevB.73.174116
[28] Baskes MI (1992). Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B 46: 2727 · doi:10.1103/PhysRevB.46.2727
[29] Besson R and Morillo J (1997). Development of a semiempirical n-body noncentral potential for Fe–Al alloys. Phys Rev B 55: 193
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.