×

An atomistic-based interphase zone model for crystalline solids. (English) Zbl 1253.74009

Summary: We present an atomistic-based interphase zone model (AIZM), discuss its physical foundation, and apply it to simulate fractures at small scales. The main technical ingredients of the atomistic-based multiscale finite element method are: (1) a colloidal crystal model to describe material interface degradation including slip planes, grain boundaries, cracks, and inhomogeneities; (2) implementation of the reduced integration and hour-glass model control technique to avoid locking inside the interphase element, and (3) introduction of a novel concept of “element stacking fault energy”, which can be utilized in simulations to distinguish ductile and brittle failures at small scales. In particular, AIZM provides an interface description that is consistent with the bulk material properties, and it can capture microstructure-based mixed-mode interfacial fracture automatically. The method may provide a mesoscale solution for polycrystalline solids by bridging the gap between fine scale molecular dynamics and macroscale continum dynamics.

MSC:

74A45 Theories of fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
74E15 Crystalline structure
74R10 Brittle fracture
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Antoun, T.; Seaman, L.; Curran, D. R.; Kanel, G. I., Spall Fracture (Shock Wave and High Pressure Phenomena) (2003), Springer
[2] Barrenblatt, G. I., The mathematical theory of equilibrium of cracks in brittle fracture, Adv. Appl. Mech., 7, 55-129 (1962)
[3] Belytschko, T., An overview of semidiscretization and time integration procedure, (Belytschko, T.; Hughes, T. J.R., Computational Methods for Transient Analysis (1983), North-Holland: North-Holland Amsterdam), 1-65
[4] Belytschko, T.; Ong, J.-S.; Liu, W. K.; Kennedy, J. M., Hourglass control in linear and nonlinear problems, Comput. Methods Appl. Mech. Engrg., 43, 251-276 (1984) · Zbl 0522.73063
[5] Belytschko, T.; Liu, W.-K.; Moran, B., Nonlinear Finite Elements for Continua and Structures (2000), Wiley, John & Sons: Wiley, John & Sons Chichester, Wset Sussex, England · Zbl 0959.74001
[6] Braides, A.; Lew, A. J.; Ortiz, M., Effective cohesive behavior of layers of interatomic planes, Arch. Ration. Mech. Anal., 180, 151-182 (2006) · Zbl 1093.74013
[7] Buehler, M. J.; Abraham, F. F.; Gao, H., Hyperelasticity governs dynamic fracture at a critical length scale, Nature, 426, 141-146 (2003)
[8] Chen, Y.; Lee, J. D., Atomistic formulation of a multiscale field theory for nano/micro solids, Philos. Mag., 85, 4095-4126 (2005)
[9] Chen, J.; Wang, X.; Wang, H.; Lee, J. D., Multiscale modeling of dynamic crack propagation, Engrg. Fract. Mech., 77, 736-743 (2010)
[10] Clayton, J. D., Modeling dynamic plastic and spall fracture in high-density polycrystalline alloys, Int. J. Solids Struct., 42, 4613-4640 (2005) · Zbl 1119.74572
[11] Daw, M. S.; Baskes, M. I., Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B, 29, 6443-6453 (1984)
[12] Dugdale, D. S., Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, 100-104 (1960)
[13] Falk, M. L.; Needleman, A.; Rice, J. R., A critical evaluation of cohesive zone models of dynamic facture, J. Phys. IV France, 11, 43-50 (2001)
[14] Gao, H.; Klein, P., Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds, J. Mech. Phys. Solids, 46, 87-218 (1988) · Zbl 0974.74008
[15] He, M.; Li, S., An embedded atom hyperelastic constitutive model and multiscale, Comput. Mech., 49, 337-355 (2012) · Zbl 1355.74072
[16] Hill, R., On constitutive macro-variables for heterogeneous solids at finite strain, Proc. Roy. Soc. Lond. A, 326, 131-147 (1972) · Zbl 0229.73004
[17] Horstemeyer, M. F.; Baskes, M. I.; Prantil, V. C.; Philliber, J., A multiscale analysis of fixed-end simple shear using molecular dynamics, crystal plasticity, and a macroscopic internal state variable theory, Model. Simul. Mater. Sci. Engrg., 11, 265-286 (2003)
[18] Hughes, T. J.R.; Talor, R.; Sackman, J.; Curnier, A.; Kamoknukulchai, W., A finite element method for a class of contact-impact problem, Comput. Methods Appl. Mech. Engrg., 8, 249-276 (1976)
[19] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Prentice Hall · Zbl 0634.73056
[20] Israelachvili, J., Intermolecular Surface & Forces (1992), Academic Press
[21] Lee, J. D.; Wang, X.; Chen, Y., Multiscale material modeling and its application to a dynamic crack propagation problem, Theor. Appl. Fract. Mech., 51, 33-40 (2009)
[22] Li, S.; Liu, X.; Agrawal, A.; To, A. C., The perfectly matched multiscale simulations for discrete systems: Extension to multiple dimensions, Phys. Rev. B, 74, 045418 (2006)
[23] Li, S.; Wang, G., Introduction to Micromechanics and Nanomechanics (2008), World Scientific Publication Inc.: World Scientific Publication Inc. Singapore · Zbl 1169.74001
[24] Liu, X.; Li, S.; Sheng, N., A cohesive finite element for quasi-continua, Comput. Mech., 42, 543-553 (2008) · Zbl 1421.74097
[25] Lu, G.; Tadmor, E. B.; Kaxiras, E., From electrons to finite elements: a concurrent multiscale approach for metals, Phys. Rev. B, 73 (2006), Article No. 024108
[26] Markus, D. S.; Hughes, T. J.R., Mixed finite element methods Reduced and selective integration techniques: a unification of concepts, Comput. Methods Appl. Mech. Engrg., 15, 63-81 (1978) · Zbl 0381.73075
[27] Moës, N.; Belytschko, T., Extended finite element method for cohesive crack growth, Engrg. Fract. Mech., 69, 813-833 (2002)
[28] Morrissey, J. W.; Rice, J. R., Crack front waves, J. Mech. Phys. Solids, 46, 467-487 (1998) · Zbl 0974.74556
[29] Nabarro, F., Mathematical theory of stationary dislocations, Adv. Phys., 1, 269-394 (1952) · Zbl 0046.44804
[30] Nguyen, O.; Ortiz, M., Coarse-graining and renormalization of atomistic binding relations and universal macroscopic cohesive behavior, J. Mech. Phys. Solids, 50, 1727-1741 (2002) · Zbl 1004.74009
[31] Ortiz, M.; Pandolfi, A., Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Int. J. Numer. Methods Engrg., 44, 1267-1282 (1999) · Zbl 0932.74067
[32] Pelaez, S.; Garcia-Mochales, P.; Serena, P. A., A comparison between EAM interatomic potentials for Al and Ni: from bulk systems to nanowires, Phys. Stat. Sol. (A), 203, 6, 1248-1253 (2006)
[33] Qian, J.; Li, S., Application of multiscale cohesive zone model to simulate fracture in polycrystalline solids, ASME J. Engrg. Mater. Technol., 133 (2011), No. 011010
[34] Park, H. S.; Karpov, E. G.; Liu, W. K.; Klein, P. A., The bridging scale for three-dimensional atomistic/continuum coupling, Philos. Mag., 85, 79-113 (2005)
[35] Peierls, R., The size of a dislocation, Proc. Roy. Soc. Lond., 52, 34-37 (1940)
[36] Park, K.; Paulino, G. H.; Roesler, J. R., A unified potential-based cohesive model of mixed-mode fracture, J. Mech. Phys. Solids, 57, 891-908 (2009)
[37] B. Ren, S. Li, A three-dimensional atomistic-based interphase finite element simulation of fragmentation in polycrystalline solids, Int. J. Numer. Methods Engrg., submitted for publication.; B. Ren, S. Li, A three-dimensional atomistic-based interphase finite element simulation of fragmentation in polycrystalline solids, Int. J. Numer. Methods Engrg., submitted for publication. · Zbl 1352.74081
[38] Rice, J. R.; Thomson, R. M., Ductile versus brittle behaviour of crystals, Philos. Mag., 29, 73-97 (1974)
[39] Rice, J. R., Dislocation nucleation from a crack tip: an analysis based on the Peierls concept, J. Mech. Phys. Solids, 40, 239-271 (1992)
[40] Rice, J. R.; Beltz, G. E., The activation energy for dislocation nucleation at a crack, J. Mech. Phys. Solids, 42, 333-360 (1994) · Zbl 0800.73345
[41] Sauer, R.; Li, S., A contact mechanics model for quasi-continua, Int. J. Numer. Methods Engrg., 71, 931-962 (2007) · Zbl 1194.74226
[42] Schall, P.; Cohen, I.; Weitz, D. A.; Spaepen, F., Visualizing dislocation nucleation by indenting colloidal crystals, Nature, 440, 319-323 (2006)
[43] Suresh, S., Colloid model for atoms, Nat. Mater., 5, 253-254 (2006)
[44] Taylor, G. I., Plastic strain in metals, J. Inst. Metals, 62, 307-324 (1938)
[45] Tian, R.; Chan, S.; Tang, S.; Kopacz, A. M.; Wang, J.-S.; Jou, H.-J.; Siad, L.; Lindgren, L.-E.; Olson, G. B.; Liu, W.-K., A multiresolution continuum simulation of the ductile fracture process, J. Mech. Phys. Solids, 58, 1681-1700 (2010) · Zbl 1200.74127
[46] Wagner, G. J.; Liu, W. K., Coupling of atomic and continuum simulations using a bridging scale decomposition, J. Comput. Phys., 190, 249-274 (2003) · Zbl 1169.74635
[47] Wells, G. N.; Sluys, L. J., A new method for modelling cohesive crack using finite elements, Int. J. Numer. Methods Engrg., 50, 2667-2682 (2001) · Zbl 1013.74074
[48] Xiao, S.; Yang, W., A temperature-related homogenization technique and its implementation in the meshfree particle method for nanoscale simulations, Int. J. Numer. Methods Engrg., 69, 2099-2125 (2007) · Zbl 1194.74286
[49] Xu, X.-P.; Needleman, A., Numerical simulations of fast crack growth in brittle solids, J. Mech. Phys. Solids, 42, 1397-1434 (1994) · Zbl 0825.73579
[50] Zeng, X. W.; Li, S., A multiscale cohesive zone model and simulations of fractures, Comput. Methods Appl. Mech. Engrg., 199, 547-556 (2010) · Zbl 1227.74054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.