×

zbMATH — the first resource for mathematics

Electron spin precession in two-dimensional electron gas with Rashba spin-orbit coupling. (English) Zbl 1236.82096
Summary: Using the time-dependent Schrödinger equation, we present the analytical result of the expectation value of spin injected into a two-dimensional electron gas with respect to an arbitrarily spin-polarized electron state and monitor the spin time-evolution. We demonstrate that the expectation value of spin operator \(S_x\) is the time-independent, and only the expectation values in the \(S_y - S_z\) plane are time-dependent. A detailed study of spin precession in the spin-valve and spin-transistor geometry is presented, in which the initial spin-polarized electron state point perpendicular and parallel to the current direction, respectively. We put forward the possible reason that the resistance change is independent of gate voltage in the spin-valve geometry. Furthermore, it has been shown that the effective magnetic field generated by the spin-orbit interaction is not same with the truly magnetic field. The main effect of the truly magnetic field is to align the spin along the field direction, but the effective magnetic field generated by the spin-orbit interaction does not.
MSC:
82D37 Statistical mechanical studies of semiconductors
82C70 Transport processes in time-dependent statistical mechanics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35Q41 Time-dependent Schrödinger equations and Dirac equations
81R25 Spinor and twistor methods applied to problems in quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wolf, S.A.; Awschalom, D.D.; Buhrman, R.A.; Daughton, J.M.; von Molnar, S.; Roukes, M.L.; Chtchelkanova, A.Y.; Treger, D.M., Science, 294, 1488, (2001)
[2] Zutic, I.; Fabian, J.; Sarma, S.D., Rev. mod. phys., 76, 323, (2004)
[3] Datta, S.; Das, B., Appl. phys. lett., 89, 665, (1990)
[4] Bychkov, Y.A.; Rashba, E.I., J. phys. C, 17, 6039, (1984)
[5] Zhang, Y.-T.; Guo, Y.; Li, Y.-C.; Zhang, Y.-T.; Li, Y.-C.; Zhang, Y.-T.; Song, Z.-F.; Li, Y.-C., Phys. rev. B, J. appl. phys., Phys. rev. B, 76, 085313, (2007)
[6] Salis, G.; Kato, Y.; Ensslin, K.; Driscoll, D.C.; Gossard, A.C.; Awschalom, D.D., Nature, 414, 619, (2001)
[7] Kikkawa, J.M.; Awschalom, D.D., Nature, 397, 139, (1999)
[8] Jedema, F.J.; Heersche, H.B.; Filip, A.T.; Baselmans, J.J.A.; van Wees, B.J., Nature, 416, 713, (2002)
[9] Matsuyama, T.; Hu, C.-M.; Grundler, D.; Meier, G.; Merkt, U., Phys. rev. B, 65, 155322, (2002)
[10] Schliemann, J.; Egues, J.C.; Loss, D., Phys. rev. lett., 90, 146801, (2003)
[11] Hammar, P.R.; Johnson, M., Phys. rev. B, 61, 7207, (2000)
[12] Winkler, R., Phys. rev. B, 69, 045317, (2004)
[13] Rashba, E.I., Sov. phys. solid state, 2, 1109, (1960)
[14] Bychkov, Yu.A.; Rashba, E.I., JETP lett., 39, 78, (1984)
[15] Dresselhaus, G., Phys. rev., 100, 580, (1955)
[16] Lommer, G.; Malcher, F.; Rössler, U., Phys. rev. B, 32, 6965, (1985)
[17] Liu, M.-H.; Chang, C.-R.; Chen, S.-H., Phys. rev. B, 71, 153305, (2005)
[18] Liu, M.-H.; Chang, C.-R., Phys. rev. B, 73, 205301, (2006)
[19] Nitta, J.; Akazaki, T.; Takayanagi, H.; Enoki, T., Phys. rev. lett., 78, 1335, (1997)
[20] Rowe, A.C.H.; Nehls, J.; Stradling, R.A.; Ferguson, R.S., Phys. rev. B, 63, 201307(R), (2001)
[21] Molenkamp, L.W.; Schmidt, G.; Bauer, G.E.W., Phys. rev. B, 64, 121202(R), (2001)
[22] Califano, M.; Chakraborty, T.; Pietilainen, P.; Hu, C.-M., Phys. rev. B, 73, 113315, (2006)
[23] Sakurai, J.J., Modern quantum mechanics, (1994), Addison-Wesley Redwood City
[24] Buttiker, M., Phys. rev. B, 27, 6178, (1983)
[25] Meier, L.; Salis, G.; Ellenberger, C.; Gini, E.; Ensslin, K., Phys. rev. B, 74, 245318, (2006)
[26] Meier, G.; Matsuyama, T.; Merkt, U., Phys. rev. B, 65, 125327, (2002)
[27] Hu, C.-M.; Nitta, J.; Jensen, A.; Hansen, J.B.; Takayanagi, H., Phys. rev. B, 63, 125333, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.