×

Modeling of amplitude-dependent damping characteristics of fiber reinforced composite thin plate. (English) Zbl 1481.74496

Summary: A damping model of fiber reinforced composite thin plate with consideration of amplitude-dependent property is established using the Jones-Nelson nonlinear theory in conjunction with the classical laminated plate theory, polynomial fitting method and strain energy method. In this model, the elastic moduli are expressed as the function of strain energy density and the loss factors in the longitudinal, transverse and shear directions are expressed as the functions of excitation amplitude. Moreover, three TC300 carbon/epoxy composite plates are taken as research objects to carry out a case study. One of them is used to determine the amplitude-dependent coefficients of loss factors in fiber reinforced composites by combining the least square method with polynomial fitting method, and the other two plates are used to verify the correctness of the theoretical model. The results of the developed model considering amplitude dependence and experimental test show a good consistency. It is discovered that the viscoelastic effect of epoxy resin materials will contribute to the increased degree of damping. So, if such plate structures exhibit more pronounced viscoelastic characteristics, there will be more significant in the nonlinear degree of amplitude-dependent damping phenomenon.

MSC:

74K20 Plates
74E30 Composite and mixture properties
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Morgan, P., Carbon Fibers and Their Composites (2005), The Chemical Rubber Company Press: The Chemical Rubber Company Press Boca Raton
[2] Aral, S.; Zhu, M.; Christopher, N., Vibration-based damage detection in wind turbine blades using phase-based motion estimation and motion magnification, J. Sound Vib., 421, 300-318 (2018)
[3] Rikards, R.; Chate, A., Vibration and damping analysis of laminated composite and sandwich shells, Mech. Compos. Mater. Struct., 4, 209-232 (1997)
[4] Berthelot, J. M.; Assarar, M.; Sefrani, Y., Damping analysis of composite materials and structures, Compos. Struct., 85, 189-204 (2008)
[5] Chortis, D. I., Historical Review on the Linear and Nonlinear Damped Structural Behavior of Composite Structures (2013), Structural Analysis of Composite Wind Turbine Blades, Springer International Publishing
[6] Qin, Z. Y.; Pang, X. J., Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions, Compos. Struct., 220, 847-860 (2019)
[7] Adams, R. D.; Bacon, D. G.C., Effect of fiber orientation and laminate geometry on the dynamic properties of CFRP, J. Compos. Mater., 7, 402-428 (1973)
[8] Ni, R. G.; Adams, R. D., The damping and dynamic moduli of symmetric laminated composite beams: theoretical and experimental results, J. Compos. Mater., 18, 104-121 (1984)
[9] Saravanos, D. A.; Chamis, C. C., An integrated methodology for optimizing the passive damping of composite structures, Polym. Compos., 11, 328-336 (1990)
[10] Saravanos, D. A.; Chamis, C. C., Unified micromechanics of damping for unidirectional and off-axis fiber composites, J. Compos. Technol. Res., 12, 31-40 (1990)
[11] Adams, R. D.; Maheri, M. R., Damping in advanced polymer-matrix composites, J. Alloys Compd., 355, 126-130 (2003)
[12] Visscher, J. D.; Sol, H.; Wilde, W. P.D., Identification of the damping properties of orthotropic composite materials using a mixed numerical experimental method, Appl. Compos. Mater., 4, 13-33 (1997)
[13] Chandra, R.; Singh, S. P.; GuptaA, K., Study of damping in fiber-reinforced composites, J. Sound Vib., 262, 475-496 (2003)
[14] Nolte, B.; Kempfle, S.; SchäFer, I., Does a real material behave fractionally? Applications of fractional differential operators to the damped structure borne sound in viscoelastic solids, J. Comput. Acoust., 11, 451-489 (2003) · Zbl 1360.74035
[15] Gu, J.; Zhang, X.; Gu, M., Effect of fiber coating on the longitudinal damping capacity of fiber-reinforced metal matrix composites, Mater. Lett., 59, 180-184 (2005)
[16] Berthelot, J. M.; Sefrani, Y., Longitudinal and transverse damping of unidirectional fibre composites, Compos. Struct., 79, 423-431 (2007)
[17] Tsai, J. L.; Chang, N. R., 2-D analytical model for characterizing flexural damping responses of composite laminates, Compos. Struct., 89, 443-447 (2009)
[18] Plagianakos, T. S.; Saravanos, D. A., Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates, Compos. Struct., 87, 23-35 (2009)
[19] Chortis, D. I.; Varelis, D. S.; Saravanos, D. A., Prediction of material coupling effect on structural damping of composite beams and blades, Compos. Struct., 94, 1646-1655 (2012)
[20] Ulke-Winter, L.; Klaerner, M.; Kroll, L., Determining the damping behavior of fiber reinforced composites: a new approach to find mathematical relationships in data sets, Compos. Struct., 100, 34-39 (2013)
[21] Klaerner, M.; Wuehrl, M., Modelling and fea-simulation of the anisotropic damping of thermoplastic composites, Adv. Aircraft Spacecraft Sci., 3, 331-349 (2016)
[22] M. Klaerner, M. Wuehrl, et al., Efficient vibro-acoustic optimisation of a thermoplastic composite oil pan. SAE Technical Paper, 2018-01-1480, 2018
[23] Dannemann, M.; TäGer, O.; Modler, N., Combined semi-analytical and numerical vibro-acoustic design approach for anisotropic fibre-reinforced composite structures, J. Sound Vib., 404, 1-14 (2017)
[24] Hahn, H. T.; Tsai, S. W., Nonlinear elastic behavior of unidirectional composite laminae, J. Compos. Mater., 7, 102-118 (1973)
[25] Sun, W.; Khatri, S. C.; Lau, A. C.W., Nonlinear material modeling and experimental characterization of graphite/PPS and glass/PPS thermoplastic matrix composites, J. Thermoplast. Compos. Mater., 5, 166-180 (1992)
[26] Jones, R. M.; Nelson, D. A.R., A new material model for the nonlinear biaxial behavior of ATJ-S graphite, J. Compos. Mater., 9, 10-27 (1975)
[27] Jones, R. M.; Morgan, H. S., Analysis of nonlinear stress-strain behavior of fiber-reinforced composite materials, AIAA, 15, 1669-1676 (1977)
[28] Firle, T. E., Amplitude dependence of internal friction and shear modulus of boron fibers, J. Appl. Phys., 39, 2839-2845 (1968)
[29] Rikards, R.; Chate, A.; Bledzki and, A. K., Numerical modeling of damping properties of laminated composite, Mech. Compos. Mater., 30, 256-266 (1994)
[30] Kinra, V. K.; Ray, S.; Zhu, C., Measurement of nonlinear damping in a Gr/Al metal-matrix composite, Exp. Mech., 37, 5-10 (1997)
[31] Maslov, K.; Kinra, V. K., Amplitude-frequency dependence of damping properties of carbon foams, J. Sound Vib., 282, 769-780 (2005)
[32] Tárrago, M. J.G.; Kari, L.; Vinolas, J., Frequency and amplitude dependence of the axial and radial stiffness of carbon-black filled rubber bushings, Polym. Test, 26, 629-638 (2007)
[33] Carrella, A.; Ewins, D. J., Identifying and quantifying structural nonlinearities in engineering applications from measured frequency response functions, Mech. Syst. Signal Process., 25, 1011-1027 (2011)
[34] Kasakewitsch, A.; Arlic, U.; Riehemann, W., Mechanical properties of aluminum-matrix-nanoparticle-composites, Key Eng. Mater., 742, 145-150 (2017)
[35] Viala, R.; Placet, V.; Cogan, S., Identification of the anisotropic elastic and damping properties of complex shape composite parts using an inverse method based on finite element model updating and 3D velocity fields measurements (FEMU-3DVF): application to bio-based composite violin soundboards, Compos. A: Appl. Sci. Manuf., 106, 91-103 (2018)
[36] Treviso, A.; Van, G. B.; Mundo, D., Damping in composite materials: properties and models, Compos. B: Eng., 78, 144-152 (2015)
[37] Amabili, Marco, Nonlinear damping in large-amplitude vibrations: modelling and experiments, Nonlinear Dyn., 3, 5-18 (2017)
[38] Haghdoust, P.; Conte, A. L., A numerical method to model non-linear damping behaviour of martensitic shape memory alloys, Materials (Basel), 11, 2178-2188 (2018)
[39] Klaerner, M.; Wuehrl, M., Amplitude-dependent damping: experimental determination and functional interpretation for metal-plastic composites, Int. J. Struct. Stab. Dyn. (2018)
[40] Li, H.; Xue, P.; Guan, Z., A new nonlinear vibration model of fiber-reinforced composite thin plate with amplitude-dependent property, Nonlinear Dyn., 94, 2219-2241 (2018)
[41] Irons, B. M.; Tuck, R. C., A version of the aitken accelerator for computer iteration, Int. J. Numer. Methods Eng., 1, 275-277 (1969) · Zbl 0256.65021
[42] Petit, P. H.; Waddoups, M. E.A., Method of predicting the nonlinear behavior of laminated composites, J. Compos. Mater., 3, 2-19 (1969)
[43] Li, H.; Xue, P.; Zhang, T., Nonlinear vibration study of fiber-reinforced composite thin plate with strain-dependent property based on strain energy density function method, Mech. Adv. Mater. Struct., 1-13 (2019)
[44] Papagiannopoulos, G. A.; Hatzigeorgiou, G. D., On the use of the half-power bandwidth method to estimate damping in building structures, Soil Dyn. Earthq. Eng., 31, 1075-1079 (2011)
[45] Wu, B. A., Correction of the half-power bandwidth method for estimating damping, Arch. Appl. Mech., 85, 315-320 (2015)
[46] Kim, S. Y.; Lee, D. H., Identification of fractional-derivative-model parameters of viscoelastic materials from measured FRFs, J. Sound Vib., 324, 570-586 (2009)
[47] Chandra, R.; Singh, S. P.; Gupta, K., Damping studies in fiber-reinforced composites – a review, Compos. Struct., 46, 41-51 (1999)
[48] Johnson, C. D., Characterization of damping properties of nonlinear viscoelastic materials, Proc. SPIE - Int. Soc. Opt. Eng., 2445, 200-211 (1995)
[49] Kosmatka, J. B., Damping performance of cocured composite laminates with embedded viscoelastic layers, Proc. SPIE - Int. Soc. Opt. Eng., 3327, 1-8 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.