×

zbMATH — the first resource for mathematics

Multiple periodic solutions for non-linear difference systems involving the \(p\)-Laplacian. (English) Zbl 1274.39009
Summary: Using the three critical points theorem, Clark’s theorem and the Morse theory, multiple periodic solutions for non-linear difference systems involving the \(p\)-Laplacian are obtained by variational methods.

MSC:
39A10 Additive difference equations
39A23 Periodic solutions of difference equations
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0022-1236(73)90051-7 · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[2] DOI: 10.1016/j.jmaa.2006.01.028 · Zbl 1103.39005 · doi:10.1016/j.jmaa.2006.01.028
[3] DOI: 10.1002/cpa.3160440808 · Zbl 0751.58006 · doi:10.1002/cpa.3160440808
[4] Chang K.C., Infinite Dimensional Morse Theory and Multiple Solution Problem (1993)
[5] Chen P., Adv. Difference Equ. 2007 (2007)
[6] DOI: 10.1512/iumj.1972.22.22008 · Zbl 0228.58006 · doi:10.1512/iumj.1972.22.22008
[7] Guo Z.M., Sci. China Ser. A 46 pp 506– (2003)
[8] DOI: 10.1112/S0024610703004563 · Zbl 1046.39005 · doi:10.1112/S0024610703004563
[9] Liu J.Q., Kexue Tongbao 17 pp 1025– (1984)
[10] Mawhin J., Critical Point Theory and Hamiltonian Systems (1989) · Zbl 0676.58017
[11] Rabinowitz P.H., Minimax Methods in Critical Point Theory with Applications to Differential Equations 65 (1986) · Zbl 0609.58002
[12] DOI: 10.1006/jfan.1996.3121 · Zbl 0889.34059 · doi:10.1006/jfan.1996.3121
[13] DOI: 10.1017/S0308210500003607 · Zbl 1073.39010 · doi:10.1017/S0308210500003607
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.