×

Transient multiexponential signals analysis using Bayesian deconvolution. (English) Zbl 1410.62165

Summary: A new method based on Bayesian deconvolution is proposed for multiexponential transient signal analysis. The multiexponential signal is initially converted to a convolution model using logarithmic and differential transformation after which the Bayesian iteration is used to deconvolve the data. The numerical simulation is applied on four different multiexponential signals with different levels of noise. Thermal transient experiment data of the high power light emitting diodes are also analyzed using the proposed method. Simulation and experimental results indicate that the present method performs efficiently in accurately estimating the decay rates except at low SNR case.

MSC:

62M15 Inference from stochastic processes and spectral analysis
60G35 Signal detection and filtering (aspects of stochastic processes)
62F15 Bayesian inference
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lin, Y. Y.; Ge, N. H.; Hwang, L. P., Multiexponential analysis of relaxation decays based on linear prediction and singular-value decomposition, J. Magn. Reson. Imag., 105, 65-71, (1993)
[2] Bumai, Y. A.; Vaskou, A. S.; Kononenko, V. K., Measurement and analysis of thermal parameters and efficiency of laser heterostructures and light-emitting diodes, Metrol. Meas. Syst., 17, 39-45, (2010)
[3] Natarajan, S.; Ha, M.; Graham, S., Measuring the thermal resistance in light emitting diodes using a transient thermal analysis technique, IEEE Trans. Electron. Dev., 60, 2548-2555, (2013)
[4] Gardner, D. G.; Gardner, J. C.; Laush, G.; Meinke, W. W., Method for the analysis of multicomponent exponential decay curves, J. Chem. Phys., 31, 978-986, (1959)
[5] Thomasson, W., Analysis of exponential decay curves: A three-step scheme for computing exponents, Math. Biosci, 22, 179-195, (1974) · Zbl 0291.65004
[6] Schlesinger, J., Fit to experimental data with exponential functions using the fast Fourier transform, Nucl. Instrum. Method, 106, 503-508, (1973)
[7] Balcou, Y., Resolution enhancement and parameter estimation in Fourier analysis, Rapid Commun. Mass Spectr., 8, 942-944, (1994)
[8] Salami, A. J.E.; Sidek, S. N., Parameter estimation of multicomponent transient signals using deconvolution and arma modelling techniques, Mech. Syst. Signal Process., 17, 1201-1218, (2003)
[9] Jibia, A. U.; Salami, M.-J. E., Analysis of transient multiexponential signals using exponential compensation deconvolution, Measurement, 45, 19-29, (2012)
[10] Jibia, A. U.; Salami, M.-J. E.; Khalifa, O. O.; Aibinu, A. M., Analysis of transient multiexponential signals using cepstral deconvolution, Appl. Comput. Harmon. Anal., 29, 88-96, (2010) · Zbl 1191.94038
[11] Nistazakis, H. E.; Katsis, A., A flexible Bayesian algorithm for sample size calculations in misclassified data, Appl. Math. Comput., 184, 86-92, (2007) · Zbl 1107.65302
[12] Molina, R.; Vega, M.; Mateos, J.; Katsaggelos, A. K., Variational posterior distribution approximation in Bayesian super resolution reconstruction of multispectral images, Appl. Comput. Harmon. Anal., 24, 251-267, (2008) · Zbl 1140.68523
[13] Kennett, T. J.; Prestwich, W. V.; Robertson, A., Bayesian deconvolution 2: noise properties, Nucl. Instrum. Method, 151, 293-301, (1978)
[14] Yildirim, S.; Cemgil, A. T.; Aktar, M.; Ozakin, Y.; Ertuzun, A., A Bayesian deconvolution approach for receiver function analysis, IEEE Trans. Geosci. Remote Sens., 48, 4151-4163, (2010)
[15] Hensler, A.; Wingert, D.; Herold, C.; Lutz, J.; Thoben, M., Thermal impedance spectroscopy of power modules, Microelectron. Reliab, 51, 1679-1683, (2011)
[16] Kennett, T.; Prestwich, J. W.; Pobertson, V. A., Bayesian deconvolution I. convergent properties, Nucl. Instrum. Method, 151, 285-292, (1978)
[17] Richards, Wh, Bayesian-based interative method of image restoration, J. Opt. Soc. Amb., 62, 55-60, (1972)
[18] Salami, M.-J. E.; Tijani, I. B.; Jibia, A. U., Development of real-time software interface for multicomponent transient signal analysis using labview and Matlab, IEEE, 4th ICOM, 1-5, (2011)
[19] Jibia, A. U.; Salami, M.-J. E.; Khalifa, O. O., Effect of sampling on the parameter estimates of multicomponent transients, IEEE, 2nd ICCAE, 704-708, (2010)
[20] Szekely, V., A new evaluation method of thermal transient measurement results, Microelectron. J., 28, 277-292, (1997)
[21] Szekely, V., Enhancing reliability with thermal transient testing, Microelectron. Rel., 42, 629-640, (2002)
[22] Farkas, G.; Vader, Q. V.; Poppe, A.; Bognar, G., Thermal investigation of high power optical devices by transient testing, IEEE Trans. Compon. Packag. Technol, 28, 45-50, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.