×

A finite strain Raviart-Thomas tetrahedron. (English) Zbl 1472.74195

Summary: A finite-strain stress-displacement mixed formulation of the classical low-order tetrahedron element is introduced. The stress vector obtained from the face normals is now a (vector) degree-of-freedom at each face. Stresses conjugate to the relative Green-Lagrange strains are used within the framework of the Hellinger-Reissner variational principle. Symmetry of the stress tensor is weakly enforced. In contrast with variational multiscale methods, there are no additional parameters to fit. When compared with smoothed finite-elements, the formulation is straightforward and sparsity pattern of the classical system retained. High accuracy is obtained for four-node tetrahedra with incompressibility and bending benchmarks being solved. Accuracy similar to the \(\overline{\boldsymbol{F}}\) hexahedron are obtained. Although the ad-hoc factor is removed and performance is highly competitive, computational cost is comparatively high, with each tetrahedron containing 24 degrees-of-freedom. We introduce a finite strain version of the Raviart-Thomas element within a common hyperelastic/elasto-plastic framework. Three benchmark examples are shown, with good results in bending, tension and compression with finite strains.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74B20 Nonlinear elasticity
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abboud, N.; Scovazzi, G., Elastoplasticity with linear tetrahedral elements: a variational multiscale method, Int. J. Numer. Methods Eng., 115, 913-955 (2018)
[2] Adams, S.; Cockburn, B., A mixed finite element method for elasticity in three dimensions, J. Sci. Comput., 25, MR2221175, 515-521 (2005) · Zbl 1125.74382
[3] Angoshtari, A.; Shojaei, M. F.; Yavari, A., Compatible-strain mixed finite element methods for 2D compressible nonlinear elasticity, Comput. Methods Appl. Math., 313, 596-631 (2017) · Zbl 1439.74383
[4] Areias, P., Simplas, (ASSOFT) registry number 2281/D/17
[5] Areias, P.; Matouš, Stabilized four-node tetrahedron with, Int. J. Numer. Methods Eng., 76, 1185-1201 (2008) · Zbl 1195.74157
[6] Areias, P. M.A.; César de Sá, J. M.A.; Conceição António, C. A.; Fernandes, A. A., Analysis of 3D problems using a new enhanced strain hexahedral element, Int. J. Numer. Methods Eng., 58, 1637-1682 (2003) · Zbl 1032.74661
[7] Areias, P. M.A.; Rabczuk, T., Smooth finite strain plasticity with nonlocal pressure support, Int. J. Numer. Methods Eng., 81, 106-134 (2010) · Zbl 1183.74256
[8] Arnold, D. N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, XXI, IV, 337-344 (1984) · Zbl 0593.76039
[9] Arnold, D. N.; Falk, R. S.; Winther, R., Mixed finite element methods for linear elasticity with weakly imposed symmetry, Math. Comput., 76, 260, 1699-1723 (2007) · Zbl 1118.74046
[10] Auricchio, F.; Beirão da Veiga, L.; Lovadina, C.; Reali, A., A stability study of some mixed finite elements for large deformation elasticity problems, Comput. Methods Appl. Math., 194, 1075-1092 (2005) · Zbl 1093.74053
[11] Bathe, K.-J., Finite Element Procedures (1996), Prentice-Hall
[12] Belytschko, T.; Bachrach, W. E., Efficient implementation of quadrilaterals with high coarse mesh accuracy, Comput. Methods Appl. Math., 54, 3, 279-301 (1986) · Zbl 0579.73075
[13] Braess, D., Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics (2007), Cambridge University Press: Cambridge University Press Cambridge CB2 8RU, UK · Zbl 1118.65117
[14] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods. Number 15 in Springer Series in Computational Mathematics (1991), Springer-Verlag: Springer-Verlag New York
[15] Broccardo, M.; Micheloni, M.; Krysl, P., Assumed-deformation gradient finite elements with nodal integration for nearly incompressible large deformation analysis, Int. J. Numer. Methods Eng., 78, 1113-1134 (2009) · Zbl 1183.74262
[16] Cao, T. S.; Montmitonnet, P.; Bouchard, P. O., A detailed description of the Gurson-Tvergaard-Needleman model within a mixed velocity pressure finite element formulation, Int. J. Numer. Methods Eng., 96, 9, 561-583 (2013) · Zbl 1352.74051
[17] Caylak, I.; Mahnken, R., Stabilization of mixed tetrahedral elements at large deformations, Int. J. Numer. Methods Eng., 90, 218-242 (2012) · Zbl 1242.74100
[18] Dohrmann, C. R.; Heinstein, M. W.; Jung, J.; Key, S. W.; Witowski, W. R., Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes, Int. J. Numer. Methods Eng., 47, 1549-1568 (2000) · Zbl 0989.74067
[19] Dunham, R. S.; Pister, K. S., A finite element application of the Hellinger-Reissner variational theorem, (Technical Report AFFDL-TR-68-150, Air Force Flight Dynamics Laboratory, vol. 45433 (1968), Wright Patterson AFB: Wright Patterson AFB OH)
[20] Gee, M. W.; Dohrmann, C. R.; Key, S. W.; Wall, W. A., A uniform nodal strain tetrahedron with isochoric stabilization, Int. J. Numer. Methods Eng., 78, 429-443 (2009) · Zbl 1183.74275
[21] Gutknecht, M. H., Variants of BICGSTAB for matrices with complex spectrum, SIAM J. Sci. Comput., 14, 5, 1020-1033 (1993) · Zbl 0837.65031
[22] He, Z. C.; Li, G. Y.; Zhong, Z. H.; Cheng, A. G.; Zhang, G. Y.; Liu, G. R.; Li, E.; Zhou, Z., An edge-based smoothed tetrahedron finite element method (es-t-fem) for 3d static and dynamic problems, Comput. Mech., 52, 221-236 (2013) · Zbl 1308.74064
[23] Hughes, T. J.R., The Finite Element Method. Dover Publications (2000), Reprint of Prentice-Hall edition, 1987 · Zbl 0634.73056
[24] Hughes, T. J.R.; Franca, L. P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Math., 59, 85-99 (1986) · Zbl 0622.76077
[25] Krysl, P.; Zhu, B., Locking-free continuum displacement finite elements with nodal integration, Int. J. Numer. Methods Eng., 76, 1020-1043 (2008) · Zbl 1195.74182
[26] Mahnken, R.; Caylak, I.; Laschet, G., Two mixed finite element formulations with area bubble functions for tetrahedral elements, Comput. Methods Appl. Math., 197, 1147-1165 (2008) · Zbl 1169.74619
[27] Masud, A.; Truster, T. J., A framework for residual-based stabilization of incompressible finite elasticty: stabilized formulations and F methods for linear triangles and tetrahedra, Comput. Methods Appl. Math., 267, 359-399 (2013) · Zbl 1286.74018
[28] Nguyen-Thoi, T.; Liu, G. R.; Lam, K. Y.; Zhang, G. Y., A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements, Int. J. Numer. Methods Eng., 78, 324-353 (2009) · Zbl 1183.74299
[29] Nguyen-Xuan, H.; Liu, G. R., An edge-based smoothed finite element method softened with a bubble function (bES-FEM) for solid mechanics problems, Comput. Struct., 128, 14-30 (2013)
[30] Nodargi, N. A.; Caselli, F.; Artioli, E.; Bisegna, P., A mixed tetrahedral element with nodal rotations for large-displacement analysis of inelastic structures, Int. J. Numer. Methods Eng., 108, 722-749 (2016)
[31] Norris, D. M.; Moran, B.; Scudder, J. K.; Quiñones, D. F., A computer simulation of the tension test, J. Mech. Phys. Solids, 26, 1-19 (1978)
[32] Ong, T. H.; Heaney, C. E.; Lee, C.-K.; Liu, G. R.; Nguyen-Xuan, H., On stability, convergence and accuracy of bES-FEM and bFS-FEM for nearly incompressible elasticity, Comput. Methods Appl. Math., 285, 315-345 (2015) · Zbl 1423.74104
[33] Onishi, Y.; Lida, R.; Amaya, K., F-bar aided edge-based smoothed finite element method using tetrahedral elements for finite deformation analysis of nearly incompressible solids, Int. J. Numer. Methods Eng., 109, 1582-1606 (2017) · Zbl 1380.65386
[34] Puso, M. A.; Solberg, J., A stabilized nodeally integrated tetrahedral, Int. J. Numer. Methods Eng., 67, 841-867 (2006) · Zbl 1113.74075
[35] Raviart, P. A.; Thomas, J. M., A Mixed Finite Element Method for Second Order Elliptic Problems, 292-315 (1977), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0362.65089
[36] Raviart, P. A.; Thomas, J. M., Primal hybrid finite element methods for 2nd order elliptic equations, Math. Comput., 31, 138, 391-413 (April 1977) · Zbl 0364.65082
[37] Reese, S.; Wriggers, P.; Reddy, B. D., A new locking-free brick element technique for large deformation problems in elasticity, Comput. Struct., 75, 291-304 (2000)
[38] Romero, I.; Bischoff, M., Incompatible bubbles: a non-conforming finite element solution for linear elasticity, Comput. Methods Appl. Math., 196, 1662-1672 (2007) · Zbl 1173.74440
[39] Simo, J. C., Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Comput. Methods Appl. Math., 99, 61-112 (1992) · Zbl 0764.73089
[40] Simo, J. C.; Armero, F., Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Int. J. Numer. Methods Eng., 33, 1413-1449 (1992) · Zbl 0768.73082
[41] Simo, J. C.; Armero, F.; Taylor, R. L., Improved versions of assumed strain tri-linear elements for 3D finite deformation problems, Comput. Methods Appl. Math., 110, 359-386 (1993) · Zbl 0846.73068
[42] Simo, J. C.; Taylor, R. L.; Pister, K. S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Methods Appl. Math., 51, 177-208 (1985) · Zbl 0554.73036
[43] Starke, G., An adaptive least-squares mixed finite element method for elasto-plasticity, SIAM J. Numer. Anal., 45, 1, 371-388 (2007) · Zbl 1131.74043
[44] Taylor, R. L., A mixed-enhanced formulation for tetrahedral finite elements, Int. J. Numer. Methods Eng., 47, 205-227 (2000) · Zbl 0985.74074
[45] Van der Vorst, H. A., A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-644 (1992) · Zbl 0761.65023
[46] Viebahn, N.; Steeger, K.; Schröder, J., A simple and efficient Hellinger-Reissner type mixed finite element for nearly incompressible elasticity, Comput. Methods Appl. Math., 340, 278-295 (2018) · Zbl 1440.74447
[47] Wilson, E. L.; Taylor, R. L.; P Doherty, W.; Ghaboussi, J., Incompatible displacement models, (Fenves, S. J.; Perrone, N.; Robinson, A. R.; Schnobrich, W. C., Numerical and Computer Models in Structural Mechanics (1973), Academic Press: Academic Press New York), 43-57
[48] Zeng, X.; Scovazzi, G.; Abboud, N.; Colomés, O.; Rossi, S., A dynamic variational multiscale method for viscoelasticity using linear tetrahedral elements, Int. J. Numer. Methods Eng., 112, 1951-2003 (2016)
[49] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method, vol. 2 (2000), Butterworth Heinemann · Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.