×

On Turán’s inequality for Legendre polynomials. (English) Zbl 1155.26012

Let \(P_n\) be the Legendre polynomial of degree \(n,\) then for all \(x\in[-1,1]\) and \(n\in \mathbb N\) the inequality \[ \alpha_n(1-x^2)\leq P_n(x)^2-P_{n-1}(x)P_{n+1}(x)\leq\beta_n(1-x^2) \] holds where \[ \alpha_n=\mu_{[n/2]}\,\mu_{[(n+1)/2]},\qquad \beta_n=\frac{1}{2} \] are the best possible constants and \(\mu_n=2^{-2n}\binom{2n}{n}\) is the normalized binomial mid-coefficient. This generalizes a classical inequality of Turán. It should be noted that the key inequality of the proof was proved by help of the Mathematica package SumCracker.

MSC:

26D05 Inequalities for trigonometric functions and polynomials
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Abramowitz, I. Stegun (Eds.), Handbook of Mathematical Functions with Formulas and Mathematical Tables, Dover, New York, 1965.; M. Abramowitz, I. Stegun (Eds.), Handbook of Mathematical Functions with Formulas and Mathematical Tables, Dover, New York, 1965.
[2] Alzer, H.; Fuglede, B., Normalized binomial mid-coefficients and power means, J. Number Theory, 115, 284-294 (2005) · Zbl 1093.11008
[3] Andrews, G. E.; Askey, R.; Roy, R., Special Functions (1999), Cambridge University Press: Cambridge University Press Cambridge
[4] Askey, R., Remembering Paul Turán, J. Approx. Theory, 86, 253-254 (1996) · Zbl 0856.01047
[5] Bang, T.; Fuglede, B., No two quotients of normalized binomial mid-coefficients are equal, J. Number Theory, 35, 345-349 (1990) · Zbl 0702.11017
[6] Berg, C.; Fuglede, B., Liouville’s operator for a disc in space, Manuscripta Math., 67, 165-185 (1990) · Zbl 0702.45015
[7] Constantinescu, E., On the inequality of P. Turán for Legendre polynomials, J. Inequal. Pure Appl. Math., 6, 2, Art. 28 (2005), \( \langle\) http://jipam.vu.edu.au/\( \rangle \) · Zbl 1086.33008
[8] Dimitrov, D. K., Higher order Turán inequalities, Proc. Amer. Math. Soc., 126, 2033-2037 (1998) · Zbl 0891.30016
[9] Gasper, G., An inequality of Turán type for Jacobi polynomials, Proc. Amer. Math. Soc., 32, 435-439 (1972) · Zbl 0237.33009
[10] S. Gerhold, M. Kauers, A procedure for proving special function inequalities involving a discrete parameter, Proceedings of ISSAC ’05, ACM Press, 2005, pp. 156-162.; S. Gerhold, M. Kauers, A procedure for proving special function inequalities involving a discrete parameter, Proceedings of ISSAC ’05, ACM Press, 2005, pp. 156-162. · Zbl 1360.68933
[11] Gerhold, S.; Kauers, M., A computer proof of Turán’s inequality, J. Inequal. Pure Appl. Math., 7, 2, Art. 42 (2006), \( \langle\) http://jipam.vu.edu.au/\( \rangle \) · Zbl 1132.26336
[12] Luke, Y. L., The Special Functions and Their Approximations, vol. 2 (1969), Academic Press: Academic Press New York
[13] G. Szegö, Orthogonal Polynomials, fourth ed., Colloquium Publications, vol. 23, American Mathematical Society, Rhode Island, 1975.; G. Szegö, Orthogonal Polynomials, fourth ed., Colloquium Publications, vol. 23, American Mathematical Society, Rhode Island, 1975.
[14] Szwarc, R., Positivity of Turán determinants for orthogonal polynomials, (Ross, K. A.; etal., Harmonic Analysis and Hypergroups (1998), Birkhäuser: Birkhäuser Boston-Basel-Berlin), 165-182 · Zbl 0884.33006
[15] Turán, P., On the zeros of the polynomials of Legendre, Časopis Pest. Mat. Fys., 75, 113-122 (1950) · Zbl 0040.32303
[16] Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis (1952), Cambridge University Press: Cambridge University Press Cambridge · JFM 45.0433.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.