×

Analysis and identification of toxin targets by topological properties in protein-protein interaction network. (English) Zbl 1412.92112

Summary: Proteins do not exert their function in isolation of one another, but interact together in protein-protein interaction (PPI) networks. Analysis of topological properties of proteins in the PPI network is very helpful to understand the function of proteins. However, until recently, no one has ever undertaken to investigate toxin targets by topological properties. In this study, for the first time, 12 topological properties are used to investigate the characteristics of toxin targets in the PPI network. Most of the topological properties are found to be statistically discriminative between toxin targets and other proteins, and toxin targets tend to play more important roles in the PPI network. In addition, based on the topological properties and the sequence information, support vector machine (SVM) is used to predict toxin targets. The results obtained by the jackknife test and 10-fold cross validation are encouraging, indicating that SVM is a useful tool for predicting toxin targets, or at least can play complementary roles in relevant areas.

MSC:

92C40 Biochemistry, molecular biology
92C42 Systems biology, networks
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bader, G. D.; Betel, D.; Hogue, C. W.V., BIND: the biomolecular interaction network database, Nucleic Acids Res., 31, 248-250 (2003)
[2] Bairoch, A.; Boeckmann, B., The SWISS-PROT protein sequence data bank, Nucleic Acids Res., 19, 2247-2249 (1991)
[3] Bateman, A.; Coin, L.; Durbin, R.; Finn, R. D.; Hollich, V.; Griffiths-Jones, S.; Khanna, A.; Marshall, M.; Moxon, S.; Sonnhammer, E. L.L., The Pfam protein families database, Nucleic Acids Res., 32, D138-D141 (2004)
[4] Brown, K. R.; Jurisica, I., Online predicted human interaction database, Bioinformatics, 21, 2076-2082 (2005)
[5] Cai, C. Z.; Han, L. Y.; Ji, Z. L.; Chen, X.; Chen, Y. Z., SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence, Nucleic Acids Res., 31, 3692-3697 (2003)
[6] Ceol, A.; Aryamontri, A. C.; Licata, L.; Peluso, D.; Briganti, L.; Perfetto, L.; Castagnoli, L.; Cesareni, G., MINT, the molecular interaction database: 2009 update, Nucleic Acids Res., 38, D532-D539 (2010)
[8] Chaurasia, G.; Iqbal, Y.; Hanig, C.; Herzel, H.; Wanker, E. E.; Futschik, M. E., UniHI: an entry gate to the human protein interactome, Nucleic Acids Res., 35, D590-D594 (2007)
[9] Chen, Y. L.; Li, Q. Z., Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo-amino acid composition, J. Theor. Biol., 248, 377-381 (2007) · Zbl 1451.92113
[10] Chin, C. S.; Samanta, M. P., Global snapshot of a protein interaction network-percolation based approach, Bioinformatics, 19, 2413-2419 (2003)
[11] Coulomb, S.; Bauer, M.; Bernard, D.; Marsolier Kergoat, M. C., Gene essentiality and the topology of protein interaction networks, Proc. Biol. Sci., 272, 1721-1725 (2005)
[12] Ding, C.; Yuan, L.; Guo, S.; Chen, W.; Lin, H., Identification of mycobacterial membrane proteins and their types using over-represented tripeptide compositions, J. Proteomics, 77, 321-328 (2012)
[13] Ding, H.; Luo, L.; Lin, H., Prediction of cell wall lytic enzymes using chous amphiphilic pseudo amino acid composition, Protein Pept. Lett., 16, 351-355 (2009)
[14] Ding, H.; Lin, H.; Feng, J., The rate of opening and closing of the DNA gate for topoisomerase II, Theory Biosci., 132, 61-64 (2013)
[15] Ding, H.; Guo, S. H.; Deng, E. Z.; Yuan, L.; Guo, F. B.; Huang, J.; Rao, N.; Chen, W.; Lin, H., Prediction of Golgi-resident protein types by using feature selection technique, Chemometr. Intell. Lab., 124, 9-13 (2013)
[16] Florez, A.; Park, D.; Bhak, J.; Kim, B. C.; Kuchinsky, A.; Morris, J.; Espinosa, J.; Muskus, C., Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection, BMC Bioinforma., 11, 484 (2010)
[17] Gavin, A. C.; Bosche, M.; Krause, R.; Grandi, P.; Marzioch, M.; Bauer, A.; Schultz, J.; Rick, J. M.; Michon, A. M.; Cruciat, C. M.; Remor, M.; Hofert, C.; Schelder, M.; Brajenovic, M.; Ruffner, H.; Merino, A.; Klein, K.; Hudak, M.; Dickson, D.; Rudi, T.; Gnau, V.; Bauch, A.; Bastuck, S.; Huhse, B.; Leutwein, C.; Heurtier, M. A.; Copley, R. R.; Edelmann, A.; Querfurth, E.; Rybin, V.; Drewes, G.; Raida, M.; Bouwmeester, T.; Bork, P.; Seraphin, B.; Kuster, B.; Neubauer, G.; Superti-Furga, G., Functional organization of the yeast proteome by systematic analysis of protein complexes, Nature, 415, 141-147 (2002)
[18] Goldberg, D. S.; Roth, F. P., Assessing experimentally derived interactions in a small world, Proc. Natl. Acad. Sci. USA, 100, 4372-4376 (2003) · Zbl 1132.92327
[19] Han, H. W.; Bae, S. H.; Jung, Y. H.; Moon, J., Genome-wide characterization of the relationship between essential and TATA-containing genes, FEBS Lett., 587, 444-451 (2013)
[20] Han, H. W.; Ohn, J. H.; Moon, J.; Kim, J. H., Yin and Yang of disease genes and death genes between reciprocally scale-free biological networks, Nucleic Acids Res., 41, 9209-9217 (2013)
[21] Hermjakob, H.; Montecchi-Palazzi, L.; Lewington, C.; Mudali, S.; Kerrien, S.; Orchard, S.; Vingron, M.; Roechert, B.; Roepstorff, P.; Valencia, A., IntAct: an open source molecular interaction database, Nucleic Acids Res., 32, D452-D455 (2004)
[22] Huang, C.; Zhang, R.; Chen, Z.; Jiang, Y.; Shang, Z.; Sun, P.; Zhang, X.; Li, X., Predict potential drug targets from the ion channel proteins based on SVM, J. Theor. Biol., 262, 750-756 (2010) · Zbl 1403.92205
[23] Hwang, S.; Son, S. W.; Kim, S. C.; Kim, Y. J.; Jeong, H.; Lee, D., A protein interaction network associated with asthma, J. Theor. Biol., 252, 722-731 (2008)
[24] Hwang, Y. C.; Lin, C. C.; Chang, J. Y.; Mori, H.; Juan, H. F.; Huang, H. C., Predicting essential genes based on network and sequence analysis, Mol. Biosyst., 5, 1672-1678 (2009)
[25] Kavlock, R. J.; Ankley, G.; Blancato, J.; Breen, M.; Conolly, R.; Dix, D.; Houck, K.; Hubal, E.; Judson, R.; Rabinowitz, J., Computational toxicology-a state of the science mini review, Toxicol. Sci., 103, 14-27 (2008)
[26] Kotlyar, M.; Fortney, K.; Jurisica, I., Network-based characterization of drug-regulated genes, drug targets, and toxicity, Methods, 57, 499-507 (2012)
[27] Li, Q.; Lai, L., Prediction of potential drug targets based on simple sequence properties, BMC Bioinforma., 8, 353 (2007)
[28] Li, W.; Godzik, A., CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics, 22, 1658-1659 (2006)
[29] Lim, E.; Pon, A.; Djoumbou, Y.; Knox, C.; Shrivastava, S.; Guo, A. C.; Neveu, V.; Wishart, D. S., T3DB: a comprehensively annotated database of common toxins and their targets, Nucleic Acids Res., 38, D781-D786 (2010)
[30] Lin, C. Y.; Chin, C. H.; Wu, H. H.; Chen, S. H.; Ho, C. W.; Ko, M. T., Hubba: hub objects analyzer a framework of interactome hubs identification for network biology, Nucleic Acids Res., 36, W438-W443 (2008)
[31] Lin, H., The modified mahalanobis discriminant for predicting outer membrane proteins by using Chou׳s pseudo amino acid composition, J. Theor. Biol., 252, 350-356 (2008) · Zbl 1398.92076
[32] Lin, H.; Li, Q. Z., Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified mahalanobis discriminant, Biochem. Biophys. Res. Commun., 354, 548-551 (2007)
[33] Lin, H.; Li, Q. Z., Using pseudo amino acid composition to predict protein structural class: approached by incorporating 400 dipeptide components, J. Comput. Chem., 28, 1463-1466 (2007)
[34] Lin, H.; Chen, W., Prediction of thermophilic proteins using feature selection technique, J. Microbiol. Methods, 84, 67-70 (2011)
[35] Lin, H.; Ding, H., Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition, J. Theor. Biol., 269, 64-69 (2011) · Zbl 1307.92080
[36] Lin, H.; Chen, W.; Ding, H., AcalPred: a sequence-based tool for discriminating between acidic and akaline enzymes, PloS one, 8, e75726 (2013)
[37] Lin, H.; Ding, H.; Guo, F. B.; Huang, J., Prediction of subcellular location of mycobacterial protein using feature selection techniques, Mol. Divers., 14, 667-671 (2010)
[38] Lin, H.; Chen, W.; Yuan, L. F.; Li, Z. Q.; Ding, H., Using over-represented tetrapeptides to predict protein submitochondria locations, Acta Biotheor., 61, 1-10 (2013)
[39] Lin, W. Z.; Fang, J. A.; Xiao, X.; Chou, K. C., Predicting secretory proteins of malaria parasite by incorporating sequence evolution information into pseudo amino acid composition via grey system model, PloS One, 7, e49040 (2012)
[40] Mondal, S.; Bhavna, R.; Mohan Babu, R.; Ramakumar, S., Pseudo amino acid composition and multi-class support vector machines approach for conotoxin superfamily classification, J. Theor. Biol., 243, 252-260 (2006) · Zbl 1447.92309
[41] Newman, M. E.J., A measure of betweenness centrality based on random walks, Socl. Networks, 27, 39-54 (2005)
[42] Peri, S.; Navarro, J. D.; Amanchy, R.; Kristiansen, T. Z.; Jonnalagadda, C. K.; Surendranath, V.; Niranjan, V.; Muthusamy, B.; Gandhi, T. K.B.; Gronborg, M., Development of human protein reference database as an initial platform for approaching systems biology in humans, Genome Res., 13, 2363-2371 (2003)
[43] Przulj, N.; Wigle, D. A.; Jurisica, I., Functional topology in a network of protein interactions, Bioinformatics, 20, 340-348 (2004)
[44] Rual, J. F.; Venkatesan, K.; Hao, T.; Hirozane Kishikawa, T.; Dricot, A.; Li, N.; Berriz, G. F.; Gibbons, F. D.; Dreze, M.; Ayivi Guedehoussou, N., Towards a proteome-scale map of the human protein-rotein interaction network, Nature, 437, 1173-1178 (2005)
[45] Stark, C.; Breitkreutz, B. J.; Reguly, T.; Boucher, L.; Breitkreutz, A.; Tyers, M., BioGRID: a general repository for interaction datasets, Nucleic Acids Res., 34, D535-D539 (2006)
[46] Stelzl, U.; Worm, U.; Lalowski, M.; Haenig, C.; Brembeck, F. H.; Goehler, H.; Stroedicke, M.; Zenkner, M.; Schoenherr, A.; Koeppen, S., A human protein-protein interaction network: a resource for annotating the proteome, Cell, 122, 957-968 (2005)
[47] Sualp, M.; Can, T., Using network context as a filter for miRNA target prediction, Biosystems, 105, 201-209 (2011)
[48] Uetz, P.; Hughes, R. E., Systematic and large-scale two-hybrid screens, Curr. Opin. Microbiol., 3, 303-308 (2000)
[49] Von Mering, C.; Huynen, M.; Jaeggi, D.; Schmidt, S.; Bork, P.; Snel, B., STRING: a database of predicted functional associations between proteins, Nucleic Acids Res., 31, 258-261 (2003)
[50] Wachi, S.; Yoneda, K.; Wu, R., Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues, Bioinformatics, 21, 4205-4208 (2005)
[51] Wang, C.; Jiang, W.; Li, W.; Lian, B.; Chen, X.; Hua, L.; Lin, H.; Li, D.; Li, X.; Liu, Z., Topological properties of the drug targets regulated by microRNA in human protein-protein interaction network, J. Drug Target, 19, 354-364 (2011)
[52] Wasserman, S.; Faust, K., Social network analysis: methods and applications (1994), Cambridge University Press
[53] Watts, D. J.; Strogatz, S. H., Collective dynamics of “small-world” networks, Nature, 393, 440-442 (1998) · Zbl 1368.05139
[54] Wuchty, S.; Almaas, E., Peeling the yeast protein network, Proteomics, 5, 444-449 (2005)
[55] Xenarios, I.; Rice, D. W.; Salwinski, L.; Baron, M. K.; Marcotte, E. M.; Eisenberg, D., DIP: the database of interacting proteins, Nucleic Acids Res., 28, 289-291 (2000)
[56] Xu, J.; Li, Y., Discovering disease-genes by topological features in human protein-protein interaction network, Bioinformatics, 22, 2800-2805 (2006)
[57] Yang, L.; Li, Q., Prediction of presynaptic and postsynaptic neurotoxins by the increment of diversity, Toxicol. in Vitro, 23, 346-348 (2009)
[58] Yu, H.; Kim, P. M.; Sprecher, E.; Trifonov, V.; Gerstein, M., The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics, PLoS Comput. Biol., 3, e59 (2007)
[59] Yuan, L. F.; Ding, C.; Guo, S. H.; Ding, H.; Chen, W.; Lin, H., Prediction of the types of ion channel-targeted conotoxins based on radial basis function network, Toxicol. In Vitro, 27, 852-856 (2013)
[60] Zhang, L.; Hu, K.; Tang, Y., Predicting disease-related genes by topological similarity in human protein-protein interaction network, Cent. Eur. J. Phys., 8, 672-682 (2010)
[61] Zhou, W.; Huang, C.; Li, Y.; Duan, J.; Wang, Y.; Yang, L., A systematic identification of multiple toxin target interactions based on chemical, genomic and toxicological data, Toxicology, 304, 173-184 (2013)
[62] Zhu, M.; Gao, L.; Li, X.; Liu, Z.; Xu, C.; Yan, Y.; Walker, E.; Jiang, W.; Su, B.; Chen, X., The analysis of the drug-targets based on the topological properties in the human protein-protein interaction network, J. Drug Target, 17, 524-532 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.