×

A new scheme for vorticity computations near a sharp corner. (English) Zbl 0800.76277


MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Moffatt, M. K., Viscous and resistive eddies near a sharp corner, J. Fluid Mech., 18, 1 (1964) · Zbl 0118.20501
[2] Bramley, J. S.; Dennis, S. C.R., The numerical solution of two-dimensional flow in a branching channel, Computers Fluids, 12, 339 (1984) · Zbl 0569.76041
[3] Dennis, S. C.R.; Smith, F. T., Steady flow through a channel with a symmetrical contriction in the form of a step, (Proc. R. Soc. Lond., A372 (1980)), 393 · Zbl 0455.76037
[4] Holstein, H.; Paddon, D. J., A finite difference strategy for re-entrant corner flow, (Numerical Methods for Fluid Dynamics (1982), Academic Press: Academic Press New York), 341-357 · Zbl 0505.76043
[5] Gupta, M. M.; Manohar, R. P.; Noble, B., Nature of viscous flows near sharp corners, Computers Fluids, 4, 379 (1981) · Zbl 0479.76041
[6] Kuwaguti, M., Numerical solution of the Navier-Stokes equations for the flow in a channel with a step, (Report MRC TSR 574 (1965), Mathematic Research Center: Mathematic Research Center Madison, WI)
[7] Woods, L. C., A note on the numerical solution of fourth order differential equations, Aero Q., 5, 176 (1954)
[8] Greenspan, D., Numerical studies of steady, viscous, incompressible flow in a channel with a step, J. Engng Math., 3, 21 (1969) · Zbl 0169.28206
[9] Richardson, L. F., Then approximate arithmetical solutions by finite difference of physical problems involving differential equations, with an application on the stress in a masonry dam, Trans. R. Soc. Lond., A210, 307 (1910)
[10] Thom, A.; Apelt, C. J., Field Computations in Engineering and Physics (1961), Van Nostrand: Van Nostrand New York · Zbl 0122.12303
[11] Vrentas, J. S.; Duda, J. L., Flow of a Newtonian fluid through a sudden contraction, Appl. Scient. Res., 28, 241 (1973) · Zbl 0267.76013
[12] Webster, M. F., A technique to solve incompressible flow equations coupled with a stress equation, (Numerical Methods for Fluid Dynamics (1982), Academic Press: Academic Press New York), 528-542 · Zbl 0606.76042
[13] Nallasamy, M., Numerical solution of separating flow due to an obstruction, Computers Fluids, 14, 59 (1986)
[14] Roache, P. J.; Mueller, T. J., Numerical solutions of laminar separation flow field, AIAA Jl, 8, 530 (1970) · Zbl 0219.76036
[15] Roache, P. J., Computational Fluid Dynamics (1972), Hermosa: Hermosa Albuquerque, NM · Zbl 0251.76002
[16] Durst, F.; Loy, T., Investigation of laminar flow in a pipe with sudden contractions of cross sectional area, Computers Fluids, 4, 15 (1985) · Zbl 0583.76042
[17] Perić, M.; Kessler, R.; Scheuerer, G., Comparison of finite-volume numerical methods with staggered and colocated grids, Computers Fluids, 16, 389 (1988) · Zbl 0672.76018
[18] Chien, J. C., Numerical computation of subsonic conical diffuser flow with nonuniform turbulent inlet conditions, Report AEDC-TR-77-73 (1977)
[19] Chien, J. C., A general finite-difference formulation with application to Navier-Stokes equations, Computers Fluids, 5, 15 (1977) · Zbl 0356.76026
[20] Minkowycz, W. J.; Sparrow, E. M.; Schneider, G. E.; Pletcher, R. H., (Handbook of Numerical Heat Transfer (1988), Wiley: Wiley New York)
[21] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T., Numerical Recipes: The Art of Scientific Computing (1987), Cambridge Univ. Press: Cambridge Univ. Press U.K
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.