×

On the set of divisors of Gaussian integers. (English) Zbl 1480.11116

H. Maier and G. Tenenbaum [Invent. Math. 76, 121–128 (1984; Zbl 0536.10039)] proved a conjecture of Erdős saying that almost all integers have a pair of divisors \(d, d'\) such that \(d < d' \leq 2d\). More precisely, they proved that, for almost all \(n\), one has \[ \inf_{d, d' \mid n} \left| \log \frac{d'}{d}\right| \leq \frac{\exp(\xi(n) \sqrt{\log \log n})}{(\log n)^{\log 3-1}} \] for any \(\xi(n)\) tending to infinity with \(n\).
In the current paper, the authors consider a similar question for Gaussian integers – they prove that almost all Gaussian integers have two divisors that are close to each other. They use a method similar to Maier and Tenenbaum, but there are additional complications coming from the two-dimensionality of the problem since now both the absolute values and the arguments of the divisors are need to be close to each other.
More precisely, the authors show that if \(\Delta_r(n)\) and \(\Delta_{\arg}(n)\) are slowly varying and such that \(\Delta_r(n)^2 \Delta_{\arg}(n) \geq (\log n)^{-\log 3 + \varepsilon}\), then, for almost all Gaussian integers \(n\) there exist a pair of divisors \(\pi, \pi' \mid n\) (with \((\pi, \pi') = 1\)) such that \[ |\log |\pi'/\pi|| \leq \Delta_r(n) \log n \quad \text{and} \quad |\arg(\pi'/\pi)| \leq \Delta_{\arg}(n). \]

MSC:

11N25 Distribution of integers with specified multiplicative constraints
11N36 Applications of sieve methods

Citations:

Zbl 0536.10039
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alladi, K.: The Turán-Kubilius inequality for integers without large prime factors. J. Reine Angew. Math. 335, 180-196 (1982) · Zbl 0483.10050
[2] Cilleruelo, J.: Lattice points on circles. J. Aust. Math. Soc. 72(2), 217-222 (2002) · Zbl 1037.11064 · doi:10.1017/S1446788700003864
[3] Erdős, P.: On the density of some sequences of integers. Bull. Am. Math. Soc. 54, 685-692 (1984) · Zbl 0032.01301 · doi:10.1090/S0002-9904-1948-09057-7
[4] Erdős, P., Tenenbaum, G.: Sur les diviseurs consecutifs d’un entier. Bull. Soc. Math. Fr. 111(fasc. 2), 125-145 (1983) · Zbl 0526.10036 · doi:10.24033/bsmf.1981
[5] Halberstam, H., Richert, H.-E.: On a result of R.R. Hall. J. Number Theory (1) 11, 76-89 (1979) · Zbl 0395.10048 · doi:10.1016/0022-314X(79)90021-0
[6] Hall, R.R., Tenenbaum, G.: Divisors, Cambridge Tracts in Mathematics, 90. Cambridge University Press, Cambridge (1988) · Zbl 0653.10001
[7] Landau, E.: Handbuch der Lehre der Verteilung der Primzahlen, Bd. 2. Teubner, Leipzig-Berlin (1909) · JFM 40.0232.09
[8] Maier, H., Tenenbaum, G.: On the set of divisors of an integer. Invent. Math. 76(1), 121-128 (1984) · Zbl 0536.10039 · doi:10.1007/BF01388495
[9] Tenenbaum, G.: Sur la probabilité qu’un entier possède un diviseur dans un intervalle donné. Compos. Math. 51(2), 243-263 (1984) · Zbl 0541.10038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.