×

Comparing strategies to prevent stroke and ischemic heart disease in the Tunisian population: Markov modeling approach using a comprehensive sensitivity analysis algorithm. (English) Zbl 1423.92112

Summary: Background. Mathematical models offer the potential to analyze and compare the effectiveness of very different interventions to prevent future cardiovascular disease. We developed a comprehensive Markov model to assess the impact of three interventions to reduce ischemic heart diseases (IHD) and stroke deaths: (i) improved medical treatments in acute phase, (ii) secondary prevention by increasing the uptake of statins, (iii) primary prevention using health promotion to reduce dietary salt consumption. Methods. We developed and validated a Markov model for the Tunisian population aged 35–94 years old over a 20-year time horizon. We compared the impact of specific treatments for stroke, lifestyle, and primary prevention on both IHD and stroke deaths. We then undertook extensive sensitivity analyses using both a probabilistic multivariate approach and simple linear regression (metamodeling). Results. The model forecast a dramatic mortality rise, with 111,134 IHD and stroke deaths (95% CI 106567 to 115048) predicted in 2025 in Tunisia. The salt reduction offered the potentially most powerful preventive intervention that might reduce IHD and stroke deaths by \(27\% (-30240 [-30580\text{ to }-29900])\) compared with 1% for medical strategies and 3% for secondary prevention. The metamodeling highlighted that the initial development of a minor stroke substantially increased the subsequent probability of a fatal stroke or IHD death. Conclusions. The primary prevention of cardiovascular disease via a reduction in dietary salt consumption appeared much more effective than secondary or tertiary prevention approaches. Our simple but comprehensive model offers a potentially attractive methodological approach that might now be extended and replicated in other contexts and populations.

MSC:

92C50 Medical applications (general)
90C15 Stochastic programming
90C40 Markov and semi-Markov decision processes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wong, N. D., Epidemiological studies of CHD and the evolution of preventive cardiology, Nature Reviews Cardiology, 11, 5, 276-289 (2014) · doi:10.1038/nrcardio.2014.26
[2] Ebrahim, S.; Smith, G. D., Exporting failure? Coronary heart disease and stroke in developing countries, International Journal of Epidemiology, 30, 2, 201-5 (2001) · doi:10.1093/ije/30.2.201
[3] Gaziano, T. A.; Bitton, A.; Anand, S., Growing epidemic of coronary heart disease in low- and middle-income countries, Current Problems in Cardiology, 35, 2, 72-115 (2010) · doi:10.1016/j.cpcardiol.2009.10.002
[4] GBD 2015. Mortality and Causes of Death Collaborators, Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015, The Lancet, 388, 10053, 1459-1544 (2016)
[5] Hankey, G. J., The global and regional burden of stroke, The Lancet Global Health, 1, 5, e239-e240 (2013) · doi:10.1016/S2214-109X(13)70095-0
[6] WHO, Global burden of stroke, http://www.who.int/cardiovascular_diseases/en/cvd_atlas_15_burden_stroke.pdf?ua=1
[7] World Health Organization, Health promotion, http://www.who.int/topics/health_promotion/en/
[8] Easterbrook, P. J.; Doherty, M. C.; Perrie, J. H.; Barcarolo, J. L.; Hirnschall, G. O., The role of mathematical modelling in the development of recommendations in the 2013 WHO consolidated antiretroviral therapy guidelines, AIDS, 28, S85-S92 (2014)
[9] Metcalf, C. J. E.; Edmunds, W. J.; Lessler, J., Six challenges in modelling for public health policy, Epidemics, 10, 9396 (2015) · doi:10.1016/j.epidem.2014.08.008
[10] Weinstein, M. C.; Coxson, P. G.; Williams, L. W.; Pass, T. M.; Stason, W. B.; Goldman, L., Forecasting coronary heart disease incidence, mortality, and cost: the Coronary Heart Disease Policy Model, American Journal of Public Health, 77, 11, 1417-1426 (1987) · doi:10.2105/ajph.77.11.1417
[11] Critchley, J.; Capewell, S., Why model coronary heart disease?, European Heart Journal, 23, 2, 110-116 (2002) · doi:10.1053/euhj.2001.2681
[12] Garnett, G. R. P.; Cousens, S.; Hallett, T. B.; Steketee, R.; Walker, N., Mathematical models in the evaluation of health programmes, The Lancet, 378, 9790, 515-525 (2011) · doi:10.1016/s0140-6736(10)61505-x
[13] Ortegon, M.; Lim, S.; Chisholm, D.; Mendis, S., Cost effectiveness of strategies to combat cardiovascular disease, diabetes, and tobacco use in sub-Saharan Africa and South East Asia: mathematical modelling study, BMJ, 344, 1, e607 (2012) · doi:10.1136/bmj.e607
[14] Leea, L. C.; Kassabb, G. S.; Guccionec, J. M., Mathematical modeling of cardiac growth and remodeling, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 8, 3, 211-226 (2017) · doi:10.1002/wsbm.1330
[15] Elena, G., Computational and mathematical methods in cardiovascular diseases, Computational and Mathematical Methods in Medicine, 2017 (2017) · doi:10.1155/2017/4205735
[16] Basu, S.; David Stuckler; Vellakkal, S.; Shah, E., Dietary salt reduction and cardiovascular disease rates in India: a mathematical model, PLoS One, 7, 9 (2012) · doi:10.1371/journal.pone.0063202
[17] Saidi, O.; Ben Mansour, N.; O’Flaherty, M.; Capewell, S.; Critchley, J. A.; Romdhane, H. B., Analyzing recent coronary heart disease mortality trends in Tunisia between 1997 and 2009, PLoS One, 8, 5 (2013) · doi:10.1371/journal.pone.0063202
[18] Saidi, O.; O’Flaherty, M.; Ben Mansour, N., Forecasting Tunisian type 2 diabetes prevalence to 2027: validation of a simple model, BMC Public Health, 15, 1, 104 (2015) · doi:10.1186/s12889-015-1416-z
[19] Sonnenberg, F. A.; Beck, J. R., Markov models in medical decision making, Medical Decision Making, 13, 4, 322-338 (2016) · doi:10.1177/0272989x9301300409
[20] Szmen, K.; Unal, B.; Capewell, S.; Critchley, J.; O’Flaherty, M., Estimating diabetes prevalence in Turkey in 2025 with and without possible interventions to reduce obesity and smoking prevalence, using a modeling approach, International Journal of Public Health, 60, 1, 13-21 (2015) · doi:10.1007/s00038-014-0622-2
[21] Briggs, A. H.; Weinstein, M. C.; Fenwick, E. A. L.; Karnon, J.; Sculpher, M. J.; Paltiel, A. D., Model parameter estimation and uncertainty: a report of the ISPOR-SMDM modeling good research practices task force-6, Value in Health, 15, 6, 835-842 (2012) · doi:10.1016/j.jval.2012.04.014
[22] Puterman, M. L., Markov Decision Processes: Discrete Stochastic Dynamic Programming (2005), New York, NY, USA: Wiley, New York, NY, USA · Zbl 1184.90170
[23] Mahanta, A., Beta distribution. Kaliabor college, http://www.kaliaborcollege.org/pdf/Mathematical_Excursion_to_Beta_Distribution.pdf
[24] Kuntz, K.; Sainfort, F.; Butler, M., Decision and simulation modeling in systematic reviews, Methods Research Report 11(13)-EHC037-EF, Rockville, MA, USA: AHRQ Publication, Rockville, MA, USA
[25] Jalal, H.; Bryan, D.; Sainfort, F.; Karen, M.; Kuntz, Linear regression metamodeling asa tool to summarize and present simulation model results, Medical Decision Making, 33, 7, 880-890 (2013) · doi:10.1177/0272989X13492014
[26] Kapetanakis, V.; Matthews, F. E.; van den Hout, A., A semi-Markov model for stroke with piecewise-constant hazards in the presence of left, right and interval censoring, Statistics in Medicine, 32, 4, 697-713 (2012) · doi:10.1002/sim.5534
[27] Eulenburg, C.; Mahner, S.; Woelber, L.; Wegscheider, K., A systematic model specification procedure for an illness-death model without recovery, PLoS One, 10, 4 (2015) · doi:10.1371/journal.pone.0123489
[28] He, F. J.; MacGregor, G. A., Role of salt intake in prevention of cardiovascular disease: controversies and challenges, Nature Reviews Cardiology, 15, 6, 371-377 (2018) · doi:10.1038/s41569-018-0004-1
[29] Moxnes, J. F.; Sandbakk, Y. V., Mathematical modelling of the oxygen uptake kinetics during whole-body endurance exercise and recovery, Mathematical and Computer Modelling of Dynamical Systems, 24, 1, 76-86 (2018) · Zbl 1484.92016 · doi:10.1080/13873954.2017.1348364
[30] Chambers, R. B., The role of mathematical modeling in medical research: research without patients?, Ochsner Journal, 2, 4, 218-223 (2000)
[31] Achana, F.; Alex, J.; Sutton, D. K., A decision analytic model to investigate the cost-effectiveness of poisoning prevention practices in households with young children, BMC Public Health, 16, 1, 705 (2016) · doi:10.1186/s12889-016-3334-0
[32] Alagoz, O.; Hsu, H.; Schaefer, A. J.; Roberts, M. S., Markov decision processes: a tool for sequential decision making under uncertainty, Medical Decision Making, 30, 4, 474-483 (2010) · doi:10.1177/0272989X09353194
[33] Merz, J. F.; Small, M. J., Measuring decision sensitivity: a combined monte carlo-logistic regression approach, Medical Decision Making, 12, 3, 189-196 (1992) · doi:10.1177/0272989x9201200304
[34] Reis dos Santos, P. M.; Isabel Reis dos Santos, M., Using subsystem linear regression metamodels in stochastic simulation, European Journal of Operational Research, 196, 3, 1031-1040 (2008) · Zbl 1176.90437 · doi:10.1016/j.ejor.2008.05.005
[35] Moran, A.; Gu, D.; Zhao, D., Future cardiovascular disease in China: Markov model and risk factor scenario projections from the Coronary Heart Disease Policy Model-China, Circulation: Cardiovascular Quality and Outcomes, 3, 3, 243-252 (2010) · doi:10.1161/Circoutcomes.109.910711
[36] Coyle, D.; Buxton, M. J.; OBrien, B. J., Measures of importance for economic analysis based on decision modeling, Journal of Clinical Epidemiology, 56, 10, 989-997 (2003) · doi:10.1016/s0895-4356(03)00176-8
[37] Meisel, K.; Silver, B., The importance of stroke units, Medicine and Health, Rhode Island, 94, 12, 376-377 (2011)
[38] Langhorne, P., Collaborative systematic review of the randomised trials of organised inpatient (stroke unit) care after stroke, BMJ, 314, 7088, 1151-1159 (1997) · doi:10.1136/bmj.314.7088.1151
[39] Ao, B. J. T.; Brown, P. M.; Feigin, V. L.; Anderson, C. S., Are stroke units cost effective? Evidence from a New Zealand stroke incidence and population-based study, International Journal of Stroke, 7, 8, 623-630 (2011) · doi:10.1111/j.1747-4949.2011.00632.x
[40] Bruce, N., http://www.who.int/dietphysicalactivity/Neal_saltpaper_2006.pdf, Geneva, Switzerland: WHO Library Cataloguing-in-Publication Data, Geneva, Switzerland
[41] Wilson, N.; Nghiem, N.; Eyles, H., Modeling health gains and cost savings for ten dietary salt reduction targets, Nutrition Journal, 15, 1, 44 (2016) · doi:10.1186/s12937-016-0161-1
[42] Klaus, D.; Hoyer, J.; Middeke, M., Salt restriction for the prevention of cardiovascular disease, Deutsches Aerzteblatt Online, 107, 26, 457-462 (2010) · doi:10.3238/arztebl.2010.0457
[43] Tuomilehto, J.; Jousilahti, P.; Rastenvte, D., Urinary sodium excretion and cardiovascular mortality in Finland: a prospective study, The Lancet, 357, 9259, 848-851 (2001) · doi:10.1016/s0140-6736(00)04199-4
[44] WHO, Reducing salt intake,” 21-10-2011, http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/news/news/2011/10/reducing-salt-intake
[45] Mason, H.; Shoaibi, A.; Ghandour, R., A cost effectiveness analysis of salt reduction policies to reduce coronary heart disease in four eastern mediterranean countries, PLoS One, 9, 1 (2014) · doi:10.1371/journal.pone.0084445
[46] Rose, G., Strategy of prevention: lessons from cardiovascular disease, BMJ, 282, 6279, 1847-1851 (1981) · doi:10.1136/bmj.282.6279.1847
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.